III-Medium: Reading the Web: Utilizing Markov Logic in Open Information Extraction
III-中:阅读网络:在开放信息提取中利用马尔可夫逻辑
基本信息
- 批准号:0803481
- 负责人:
- 金额:$ 89.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project adresses the challenge of automatically extracting high-quality knowledge bases from text corpora. Previous work, led by Prof. Etzioni, developed KnowItAll (http://www.cs.washington.edu/research/knowitall), an unsupervised, domain-independent, scalable system that learns from the Web in an open-ended fashion. Another project, led by Prof. Domingos, has formalized and fully implemented a powerful framework called Markov Logic Networks (MLNs) (see http://www.cs.washington.edu/ai/srl.html) that enable inference and learning in large, first-order models. This project integrates KnowItAll and MLNs to build large-scale ontologies from text corpora: extracting relational tuples, using joint inference to merge and validate the tuples, mapping extracted phrases to a taxonomy, and using probabilistic inference rules to answer queries about the ontology.Consider, for example, the query "how many Nobel Laureates where born in Europe?" In response, Google merely provides documents matching the keywords in the query. KnowItAll can only identify people who are explicitly identified as Nobel Laureates and Europeans. This project investigates a system that utilizes both information extraction and probabilistic reasoning to identify candidate answers, not explicitly stated in the text, and their likelihood of being correct. As a simple example, the system concludes that Einstein was born in Europe based on the sentence "Einstein was born in Ulm, Germany". The query "what foods help prevent osteoporosis?" is answered using a multi-step reasoning chain regarding the ingredients of the food and their ability to prevent the disease.The broader impact of this research includes novel methods of building knowledge bases automatically. Such knowledge bases (after some manual tuning, perhaps) could be used to support a wide range of applications from question-answering systems, to knowledge-based systems for medical applications, to background knowledge in support of machine reading of text. The knowledge bases created by this project will be made freely available to the research community as a Web-site and also as a Web-based API via the project Web site (http://www.cs.washington.edu/research/knowitall/ReadingTheWeb/).
这个项目解决了从文本语料库中自动提取高质量知识库的挑战。由埃齐奥尼教授领导的之前的工作开发了Knowwith All(http://www.cs.washington.edu/research/knowitall),,这是一个无监督、独立于领域、可扩展的系统,它以一种开放的方式从网络中学习。由多明戈斯教授领导的另一个项目已经形式化并完全实现了一个名为马尔可夫逻辑网络(MLN)的强大框架(见http://www.cs.washington.edu/ai/srl.html)),该框架能够在大型一阶模型中进行推理和学习。这个项目集成了Knowwitall和MLN来从文本语料库中构建大规模的本体:提取关系元组,使用联合推理来合并和验证元组,将提取的短语映射到分类,并使用概率推理规则来回答关于本体的查询。作为回应,谷歌只提供与查询中的关键字匹配的文档。Knowwitall只能识别那些明确被确认为诺贝尔奖获得者和欧洲人的人。这个项目调查了一个系统,它利用信息提取和概率推理来识别文本中没有明确说明的候选答案,以及它们正确的可能性。作为一个简单的例子,该系统根据一句话得出结论:爱因斯坦出生在欧洲,德国乌尔姆。询问“哪些食物有助于预防骨质疏松症?”这项研究的更广泛的影响包括自动建立知识库的新方法。这种知识库(也许经过一些人工调整之后)可用于支持广泛的应用,从问答系统到医疗应用的基于知识的系统,再到支持文本机器阅读的背景知识。本项目创建的知识库将作为网站免费提供给研究界,也将通过项目网站(http://www.cs.washington.edu/research/knowitall/ReadingTheWeb/).作为基于网络的API免费提供
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oren Etzioni其他文献
Lexical translation with application to image searching on the web
词汇翻译及其在网络图像搜索中的应用
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Oren Etzioni;Kobi Reiter;S. Soderland;M. Sammer - 通讯作者:
M. Sammer
Machine reading at web scale
网络规模的机器阅读
- DOI:
10.1145/1341531.1341533 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Oren Etzioni - 通讯作者:
Oren Etzioni
Expanding the Recall of Relation Extraction by Bootstrapping
通过 Bootstrapping 扩展关系提取的召回率
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
J. Tomita;S. Soderland;Oren Etzioni - 通讯作者:
Oren Etzioni
Artificial Intelligence and Life in 2030: The One Hundred Year Study on Artificial Intelligence
人工智能与2030年的生活:人工智能一百年研究
- DOI:
10.48550/arxiv.2211.06318 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
P. Stone;R. Brooks;Erik Brynjolfsson;Ryan Calo;Oren Etzioni;G. Hager;Julia Hirschberg;Shivaram Kalyanakrishnan;Ece Kamar;Sarit Kraus;Kevin Leyton;D. Parkes;W. Press;A. Saxenian;J. Shah;Milind Tambe;Astro Teller - 通讯作者:
Astro Teller
Incorporating Ethics into Artificial Intelligence
- DOI:
10.1007/s10892-017-9252-2 - 发表时间:
2017-03-07 - 期刊:
- 影响因子:0.800
- 作者:
Amitai Etzioni;Oren Etzioni - 通讯作者:
Oren Etzioni
Oren Etzioni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oren Etzioni', 18)}}的其他基金
Unsupervised, Non-stop Extraction of Information from the World Wide Web
无监督、不间断地从万维网上提取信息
- 批准号:
0535284 - 财政年份:2006
- 资助金额:
$ 89.97万 - 项目类别:
Continuing Grant
ITR: Semantically Tractable Questions: Theory and Implementation
ITR:语义上可处理的问题:理论与实施
- 批准号:
0312988 - 财政年份:2003
- 资助金额:
$ 89.97万 - 项目类别:
Standard Grant
SGER: Assisted Cognition: First Steps Towards Computer Aids for People with Alzheimer's Disease
SGER:辅助认知:为阿尔茨海默病患者提供计算机辅助的第一步
- 批准号:
0225774 - 财政年份:2002
- 资助金额:
$ 89.97万 - 项目类别:
Standard Grant
Automatic Reference Librarians for the World Wide Web
万维网自动参考图书馆员
- 批准号:
9874759 - 财政年份:1999
- 资助金额:
$ 89.97万 - 项目类别:
Continuing Grant
Explanation-Based Learning: Finding Better Explanations Via Partial Evaluation
基于解释的学习:通过部分评估找到更好的解释
- 批准号:
9211045 - 财政年份:1992
- 资助金额:
$ 89.97万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 89.97万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
- 批准号:
2327438 - 财政年份:2024
- 资助金额:
$ 89.97万 - 项目类别:
Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
$ 89.97万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 89.97万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 89.97万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 89.97万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 89.97万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 89.97万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 89.97万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 89.97万 - 项目类别:
Standard Grant














{{item.name}}会员




