Explanation-Based Learning: Finding Better Explanations Via Partial Evaluation
基于解释的学习:通过部分评估找到更好的解释
基本信息
- 批准号:9211045
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1992
- 资助国家:美国
- 起止时间:1992-07-01 至 1994-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Controlling search is a central concern for AI. Overcoming combinatorial search in realistic planning, design, and reasoning problems requires large doses of domain specific search control knowledge. Explanation Based Learning (EBL) has emerged as a standard technique for acquiring search control knowledge. Previous EBL work has produced impressive demonstrations but has also uncovered a fundamental problem EBL frequently constructs overlycomplex explanations that yield ineffective control knowledge. This research describes a solution: integrating EBL with partial evaluation to improve EBL's explanations. In standard EBL systems, the problem solver's behavior on a training example determines what EBL explains and how. Partial evaluation, in contrast, performs a global analysis that often yields simpler and more general explanations. In previous work, STATIC (a partial evaluator written by the PI) was pitted against PRODIGY/EBL, a state of the art EBL system. When tested in PRODIGY/EBL's benchmark problem spaces, STATIC generated search control knowledge that was up to three times a effective as PRODIGY/EBL's, and did so twenty six to seventy seven times faster. Since STATIC's analysis in not focused by training examples, however, it may flounder when confronted with large and complex problem spaces. The PI intends to design and build a hybrid system , called DYNAMIC, that will overcome the weaknesses of both approaches. DYNAMIC will identify learning opportunities a la PRODIGY/EBL, BUT GENERATE EXPLANATIONS a la STATIC. The detailed studies of the two systems suggest that DYNAMIC will significantly out perform both, and yield insights in two fundamental questions: how to improve machine generated explanations, and what is the appropriate role of training examples in explanation based learning? //
控制搜索是人工智能的核心问题。在现实的规划、设计和推理问题中克服组合搜索需要大量的领域特定搜索控制知识。基于解释的学习(EBL)已经成为一种获取搜索控制知识的标准技术。以前的EBL工作已经产生了令人印象深刻的演示,但也发现了一个基本问题,EBL经常构建过于复杂的解释,从而产生无效的控制知识。本文提出了一种解决方案:将EBL与部分评价相结合,以改进EBL的解释。在标准的EBL系统中,问题解决者在训练示例上的行为决定了EBL解释什么以及如何解释。相反,部分评估执行全局分析,通常产生更简单和更一般的解释。在以前的工作中,STATIC(由PI编写的部分评估器)与PRODIGY/EBL(最先进的EBL系统)进行了竞争。当在PRODIGY/EBL的基准问题空间中进行测试时,STATIC生成的搜索控制知识的效率是PRODIGY/EBL的三倍,并且速度快了26到77倍。但是,由于STATIC的分析不是集中在训练示例上,因此在面对大型和复杂的问题空间时,它可能会陷入困境。PI打算设计并建立一个称为DYNAMIC的混合系统,它将克服这两种方法的弱点。DYNAMIC将像PRODIGY/EBL那样识别学习机会,但像STATIC那样生成解释。对这两个系统的详细研究表明,DYNAMIC将显著优于两者,并在两个基本问题上产生见解:如何改进机器生成的解释,以及训练示例在基于解释的学习中的适当作用是什么?//
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oren Etzioni其他文献
Machine reading at web scale
网络规模的机器阅读
- DOI:
10.1145/1341531.1341533 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Oren Etzioni - 通讯作者:
Oren Etzioni
Lexical translation with application to image searching on the web
词汇翻译及其在网络图像搜索中的应用
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Oren Etzioni;Kobi Reiter;S. Soderland;M. Sammer - 通讯作者:
M. Sammer
Artificial Intelligence and Life in 2030: The One Hundred Year Study on Artificial Intelligence
人工智能与2030年的生活:人工智能一百年研究
- DOI:
10.48550/arxiv.2211.06318 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
P. Stone;R. Brooks;Erik Brynjolfsson;Ryan Calo;Oren Etzioni;G. Hager;Julia Hirschberg;Shivaram Kalyanakrishnan;Ece Kamar;Sarit Kraus;Kevin Leyton;D. Parkes;W. Press;A. Saxenian;J. Shah;Milind Tambe;Astro Teller - 通讯作者:
Astro Teller
Expanding the Recall of Relation Extraction by Bootstrapping
通过 Bootstrapping 扩展关系提取的召回率
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
J. Tomita;S. Soderland;Oren Etzioni - 通讯作者:
Oren Etzioni
Incorporating Ethics into Artificial Intelligence
- DOI:
10.1007/s10892-017-9252-2 - 发表时间:
2017-03-07 - 期刊:
- 影响因子:0.800
- 作者:
Amitai Etzioni;Oren Etzioni - 通讯作者:
Oren Etzioni
Oren Etzioni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oren Etzioni', 18)}}的其他基金
III-Medium: Reading the Web: Utilizing Markov Logic in Open Information Extraction
III-中:阅读网络:在开放信息提取中利用马尔可夫逻辑
- 批准号:
0803481 - 财政年份:2008
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Unsupervised, Non-stop Extraction of Information from the World Wide Web
无监督、不间断地从万维网上提取信息
- 批准号:
0535284 - 财政年份:2006
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
ITR: Semantically Tractable Questions: Theory and Implementation
ITR:语义上可处理的问题:理论与实施
- 批准号:
0312988 - 财政年份:2003
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
SGER: Assisted Cognition: First Steps Towards Computer Aids for People with Alzheimer's Disease
SGER:辅助认知:为阿尔茨海默病患者提供计算机辅助的第一步
- 批准号:
0225774 - 财政年份:2002
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Automatic Reference Librarians for the World Wide Web
万维网自动参考图书馆员
- 批准号:
9874759 - 财政年份:1999
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
- 批准号:81900115
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
Reality-based Interaction用户界面模型和评估方法研究
- 批准号:61170182
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
- 批准号:30771013
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
- 批准号:30470665
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
- 批准号:60376005
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
ExplainIt: Improving Student Learning with Explanation-based Classroom Response Systems
ExplainIt:通过基于解释的课堂响应系统改善学生的学习
- 批准号:
2111216 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
ExplainIt: Improving Student Learning with Explanation-based Classroom Response Systems
ExplainIt:通过基于解释的课堂响应系统改善学生的学习
- 批准号:
2111473 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
An Explanation-based Reinforcement Learning Approach
基于解释的强化学习方法
- 批准号:
2169184 - 财政年份:2019
- 资助金额:
$ 6万 - 项目类别:
Studentship
Incorporating Prior Domain Knowledge into a Support Vector Machine Classifier with Explanation-Based Learning
通过基于解释的学习将先验领域知识纳入支持向量机分类器
- 批准号:
0413161 - 财政年份:2004
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
CAREER: Multimedia Explanation Generation for Knowledge-Based Learning Environments
职业:基于知识的学习环境的多媒体解释生成
- 批准号:
9701503 - 财政年份:1997
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Explanation-Based Neural Network Learning
基于解释的神经网络学习
- 批准号:
9313367 - 财政年份:1993
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
EXPLANATION-BASED LEARNING AND REFORMATION FOR PROGRAM GENERATION,TRANSFORMATION,AND VERIFICATION
基于解释的学习和程序生成、转换和验证的改革
- 批准号:
04650298 - 财政年份:1992
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Refining Concepts And Domain Theories By Combining Explanation-Based And Empirical Learning
通过结合基于解释的学习和实证学习来完善概念和领域理论
- 批准号:
9102926 - 财政年份:1991
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Integrating Explanation-Based and Neural Approaches to Machine Learning
将基于解释的方法和神经方法集成到机器学习中
- 批准号:
9002413 - 财政年份:1990
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant














{{item.name}}会员




