RI-Medium: From Actors To Actions: Analysis And Alignment Of Images, Video And Text

RI-Medium:从演员到行动:图像、视频和文本的分析和对齐

基本信息

  • 批准号:
    0803538
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

Video clips and corresponding narrations together provide much richer information than either in isolation, yet most current recognition systems process visual and textual information separately. The PIs focus on the task of learning how to recognize corresponding actions in videos and textual narrative accurately and robustly. In particular, they focus on semantic descriptions of human actions. This research will have broad impact on applications including video retrieval in digital libraries, human behavior modeling, and video surveillance.The PIs' research will tightly couple methods in computer vision, natural-language processing, and machine learning through robust, automatically learned correspondences. With a collection of loosely aligned video-text annotation pairs (such as movies or TV shows with their associated screenplays), the task is to learn how to associate action descriptions in text with actions, objects and actors in videos. This correspondence is essential for semantic grounding of text using visual action appearance. The fundamental challenge is bridging the semantic gap of images and of text: images depict geometrical relationships and properties of image regions, while natural language encodes abstract semantic relationships in grammatical structures. Bridging this semantic gap in the context of action understanding is the focus of our research effort.The eventual goal is to be able to recognize actions in videos and create text description for actions in videos. While this goal challenges both computer vision and natural language processing, it also opens up an exciting new and very fruitful collaboration between the two research areas where the task of recognition is achieved by simultaneous learning and inference in both domains.Information on this project, including papers, results, database and open source codes, will be available at http://www.seas.upenn.edu/~jshi/#research
视频片段和相应的旁白一起提供的信息比单独提供的信息要丰富得多,然而大多数当前的识别系统分别处理视觉和文本信息。PI专注于学习如何准确而稳健地识别视频和文本叙事中的相应动作。特别是,它们侧重于对人类行为的语义描述。这项研究将对数字图书馆中的视频检索、人类行为建模和视频监控等应用产生广泛的影响。PI的研究将通过稳健的、自动学习的对应关系将计算机视觉、自然语言处理和机器学习的方法紧密结合在一起。有了一组松散排列的视频-文本注释对(例如电影或电视剧及其关联的剧本),任务是学习如何将文本中的动作描述与视频中的动作、对象和演员相关联。这种对应关系对于使用视觉动作外观的文本的语义基础是必不可少的。最根本的挑战是弥合图像和文本的语义鸿沟:图像描述图像区域的几何关系和属性,而自然语言则以语法结构编码抽象的语义关系。在动作理解的背景下弥合这种语义鸿沟是我们研究的重点,最终目标是能够识别视频中的动作并为视频中的动作创建文本描述。虽然这一目标挑战了计算机视觉和自然语言处理,但它也开启了这两个研究领域之间令人兴奋的新的和非常富有成效的合作,其中识别任务是通过两个领域的同时学习和推理来完成的。关于这个项目的信息,包括论文、结果、数据库和开放源代码,将在http://www.seas.upenn.edu/~jshi/#research上获得

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianbo Shi其他文献

Methylmercury exposure alters RNA splicing in human neuroblastoma SK-N-SH: Implications from proteomic and post-transcriptional responses
甲基汞暴露改变人神经母细胞瘤 SK-N-SH 中的 RNA 剪接:蛋白质组和转录后反应的影响
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiling Li;Bin He;Jiejun Gao;Qian S. Liu;Runzeng Liu;Guangbo Qu;Jianbo Shi;Ligang Hu;Guibin Jiang
  • 通讯作者:
    Guibin Jiang
Deep learning‐based prediction of treatment prognosis from nasal polyp histology slides
基于深度学习的鼻息肉组织学幻灯片治疗预后预测
  • DOI:
    10.1002/alr.23083
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kanghua Wang;Yong Ren;Ling Ma;Yunping Fan;Zheng Yang;Qintai Yang;Jianbo Shi;Yueqi Sun
  • 通讯作者:
    Yueqi Sun
Monitoring AuNP Dynamics in the Blood of a Single Mouse Using Single Particle Inductively Coupled Plasma Mass Spectrometry with an Ultralow-Volume High-Efficiency Introduction System
  • DOI:
    https://dx.doi.org/10.1021/acs.analchem.0c02285
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
  • 作者:
    Yuzhen Sun;Nian Liu;Yuanyuan Wang;Yongguang Yin;Guangbo Qu;Jianbo Shi;Maoyong Song;Ligang Hu;Bin He;Guangliang Liu;Yong Cai;Yong Liang;Guibin Jiang
  • 通讯作者:
    Guibin Jiang
Occurrence of Silver-containing Particles in Rat Brains upon Intranasal Exposure of Silver Nanoparticles
  • DOI:
    doi.org/10.1093/mtomcs/mfab077
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Nian Liu;Guangbo Qu;Ruoxi Wen;Xiaolei Liu;Yuanyuan Wang;Jie Gao;Yongguang Yin;Jianbo Shi;Qunfang Zhou;Bin He;Ligang Hu;Guibin Jiang
  • 通讯作者:
    Guibin Jiang
Exploiting Visual-Spatial First-Person Co-Occurrence for Action-Object Detection without Labels
利用视觉空间第一人称共现进行无标签的动作对象检测
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gedas Bertasius;Stella X. Yu;Jianbo Shi
  • 通讯作者:
    Jianbo Shi

Jianbo Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianbo Shi', 18)}}的其他基金

EAGER: Construction of Social Interactions in 3D Space from First-Person Videos
EAGER:从第一人称视频构建 3D 空间中的社交互动
  • 批准号:
    1651389
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: 1st Sino-USA Summer School in Vision, Learning, Pattern Recognition, VLPR 2009
合作研究:第一届中美视觉、学习、模式识别暑期学校,VLPR 2009
  • 批准号:
    0940840
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Learning to See - A Unified Segmentation and Recognition Approach
职业:学习观察 - 统一的细分和识别方法
  • 批准号:
    0447953
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RR:MACNet: Mobile Ad-hoc Camera Networks
RR:MACNet:移动自组摄像机网络
  • 批准号:
    0423891
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
  • 批准号:
    2327438
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了