EAGER: Construction of Social Interactions in 3D Space from First-Person Videos

EAGER:从第一人称视频构建 3D 空间中的社交互动

基本信息

  • 批准号:
    1651389
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Precision modeling tools for realistic and complex human social interaction are not available today. First-person videos provide a unique opportunity to capture social interaction at unprecedented precision. In contrast, current third person surveillance video only records the few distance views of the interaction passively at a much reduced spatial resolution. This exploratory research project proposes to harness multiple first-person cameras as one collective instrument to capture, model, and predict social behaviors. The proposed research transforms the way we construct realistic social interaction models, while also advancing first-person video recognition. If successful, the envisioned computational model can act as a coach who learns what constitutes successful interactions and failures, thus being able to find solutions to mediate and prevent potential conflicts. The proposed research will model dynamic social interactions in 3D space from multiple personal perspectives. Recognition and prediction of complex social group interactions are challenging because people in the group can carry out unexpected actions intentionally or by mistake. In addition, due to variances in individuals' preferences and abilities, the same activities could be carried out in different ways. First-person videos can be highly jittery, resulting in fast and unpredictable object motions in the field of view. Building on PI's recent work establishing computational foundations for modeling social (people-people) and personal (people-scene) interactions using first-person cameras, this research will explore the novel concept the duality between social attention and roles: social attention provides a cue for recognizing social roles, and social roles facilitate the predictions of dynamic social formation change and its associated social attention. The formal foundation of the 3D model is based on constructing a visual memory that stores first-person social experiences in three forms: (a) geometric social formation, (b) visual image of first-person view, and (c) first-person seen by nearby third person views. As a proof-of-concept, the 3D space model capturing social interactions will be tested on collaborative social tasks such as assembling (Ikea) furniture, or building a block house with a group of friends. This research will construct a labeled dataset capturing the interactions, and perform analysis on both accuracy in recognizing social roles and precision in predicting spatial movements of the members in that social interaction. The results of this project, including papers and dataset, will be disseminated to the public through our project website (http://www.cis.upenn.edu/~jshi/NSF_SocialMemory/nsf_social_visual_memory.html). The software created under this project will be made available to the public through GitHub, a web-based Git repository hosting service
用于现实和复杂的人类社会互动的精确建模工具目前还不存在。第一人称视频提供了以前所未有的精确度捕捉社交互动的独特机会。相比之下,当前的第三人称监控视频仅以较低的空间分辨率被动地记录了交互的少数几个距离视图。这一探索性研究项目建议利用多个第一人称摄像头作为一个集体工具来捕获、建模和预测社会行为。提出的研究改变了我们构建现实社交模型的方式,同时也促进了第一人称视频识别。如果成功,设想的计算模型可以充当教练,学习什么构成成功的交互和失败,从而能够找到解决方案来调解和防止潜在的冲突。这项拟议的研究将从多个个人角度对3D空间中的动态社交互动进行建模。识别和预测复杂的社会群体互动是具有挑战性的,因为群体中的人可能会故意或错误地做出意想不到的行为。此外,由于个人喜好和能力的不同,相同的活动可能会以不同的方式进行。第一人称视频可能会高度抖动,导致视野中快速且不可预测的对象运动。在Pi最近的工作基础上,建立了使用第一人称摄像机模拟社会(人-人)和个人(人-场景)交互的计算基础,本研究将探索社会注意和角色之间的二元性这一新概念:社会注意为识别社会角色提供线索,而社会角色有助于预测社会形态的动态变化及其相关的社会关注。3D模型的形式基础是构建以三种形式存储第一人称社交经验的视觉记忆:(A)几何社会形态,(B)第一人称视角的视觉图像,以及(C)附近第三人称视角所看到的第一人称。作为概念验证,捕捉社交互动的3D空间模型将在协作社交任务中进行测试,如组装(宜家)家具或与一群朋友一起建造积木屋。本研究将构建一个捕捉互动的标签数据集,并对识别社会角色的准确性和预测该社会互动中成员的空间运动的准确性进行分析。该项目的结果,包括论文和数据集,将通过我们的项目网站(http://www.cis.upenn.edu/~jshi/NSF_SocialMemory/nsf_social_visual_memory.html).向公众发布在这个项目下创建的软件将通过GitHub向公众提供,GitHub是一个基于Web的Git存储库托管服务

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianbo Shi其他文献

Deep learning‐based prediction of treatment prognosis from nasal polyp histology slides
基于深度学习的鼻息肉组织学幻灯片治疗预后预测
  • DOI:
    10.1002/alr.23083
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kanghua Wang;Yong Ren;Ling Ma;Yunping Fan;Zheng Yang;Qintai Yang;Jianbo Shi;Yueqi Sun
  • 通讯作者:
    Yueqi Sun
Methylmercury exposure alters RNA splicing in human neuroblastoma SK-N-SH: Implications from proteomic and post-transcriptional responses
甲基汞暴露改变人神经母细胞瘤 SK-N-SH 中的 RNA 剪接:蛋白质组和转录后反应的影响
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiling Li;Bin He;Jiejun Gao;Qian S. Liu;Runzeng Liu;Guangbo Qu;Jianbo Shi;Ligang Hu;Guibin Jiang
  • 通讯作者:
    Guibin Jiang
Exploiting Visual-Spatial First-Person Co-Occurrence for Action-Object Detection without Labels
利用视觉空间第一人称共现进行无标签的动作对象检测
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gedas Bertasius;Stella X. Yu;Jianbo Shi
  • 通讯作者:
    Jianbo Shi
Effective especially sustainable degradation of antibiotics in water via a stable slow-release persulfate hydrogel encapsulated by gelatin
通过一种由明胶包裹的稳定的缓释过硫酸盐水凝胶,实现水中抗生素的有效降解,尤其是可持续降解
  • DOI:
    10.1016/j.seppur.2025.131509
  • 发表时间:
    2025-07-19
  • 期刊:
  • 影响因子:
    9.000
  • 作者:
    Zheshan Duan;Xike Tian;Zihan Zhuang;Yulun Nie;Yong Li;Jianbo Shi
  • 通讯作者:
    Jianbo Shi
Efficient immobilization and detoxification of gaseous elemental mercury by nanoflower/rod WSesub2/sub/halloysite composite: Performance and mechanisms
纳米花/棒状 WSesub2/sub/埃洛石复合材料对气态元素汞的高效固定化和解毒作用:性能与机制
  • DOI:
    10.1016/j.jhazmat.2023.131898
  • 发表时间:
    2023-09-15
  • 期刊:
  • 影响因子:
    11.300
  • 作者:
    Xuelei Duan;Yuan Li;Changxian Zhao;Yiwen Shen;Qi Guo;Zhihao Huang;Dexu Shan;Yue Gao;Kegang Zhang;Jianbo Shi;Jingfu Liu;Yongsheng Chen;Chun-Gang Yuan
  • 通讯作者:
    Chun-Gang Yuan

Jianbo Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianbo Shi', 18)}}的其他基金

Collaborative Research: 1st Sino-USA Summer School in Vision, Learning, Pattern Recognition, VLPR 2009
合作研究:第一届中美视觉、学习、模式识别暑期学校,VLPR 2009
  • 批准号:
    0940840
  • 财政年份:
    2009
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RI-Medium: From Actors To Actions: Analysis And Alignment Of Images, Video And Text
RI-Medium:从演员到行动:图像、视频和文本的分析和对齐
  • 批准号:
    0803538
  • 财政年份:
    2008
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Learning to See - A Unified Segmentation and Recognition Approach
职业:学习观察 - 统一的细分和识别方法
  • 批准号:
    0447953
  • 财政年份:
    2005
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RR:MACNet: Mobile Ad-hoc Camera Networks
RR:MACNet:移动自组摄像机网络
  • 批准号:
    0423891
  • 财政年份:
    2004
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

CAP: Semi-supervised Fairness-Enhanced Knowledge Graph Construction on Social Media for AI-Enhanced Juvenile Justice
CAP:社交媒体上的半监督公平增强知识图谱构建,用于人工智能增强少年司法
  • 批准号:
    2323419
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Construction of basic data for social implementation of pharmacogenomic testing
药物基因组学检测社会实施基础数据构建
  • 批准号:
    23K14827
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Social Construction of Crime iin the News and Social Control in Japan
日本新闻犯罪的社会建构与社会控制
  • 批准号:
    23K01761
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a bottom-up explainable discriminator construction method and its application to social-infrastructure problems
自下而上的可解释判别器构建方法的开发及其在社会基础设施问题中的应用
  • 批准号:
    23K11248
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A comparison between the legal definition of terrorism and the social construction of terrorism in political and media discourse.
恐怖主义的法律定义与政治和媒体话语中恐怖主义的社会建构的比较。
  • 批准号:
    2865719
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Clay (co)Construction - using creative practice to improve health and wellbeing and social isolation within the veteran community in Sunderland.
Clay (co)Construction——利用创造性实践来改善桑德兰退伍军人社区的健康和福祉以及社会隔离。
  • 批准号:
    2895243
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
he Construction of Medicine v.s. Non-medicine: a Historical and Social Study of Herbs' Materiality and Knowledge Productions in the Local and Global Context
他的医学建设与。
  • 批准号:
    23K12073
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of the composition of the liquid fertilizer source and construction of a cultivation system for social implementation of organic hydroponic cultivation.
液肥来源组成的阐明及社会实施有机水培栽培体系的构建
  • 批准号:
    23K05227
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Cultural Emergence And Social Construction Of Self-Harm In The 1990's
20世纪90年代自残的文化出现与社会建构
  • 批准号:
    2739053
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
A Research on Elder Death Review and Construction of Social Work for Prevention of Elder Abuse
老年人死亡审查与防虐老人社会工作建设研究
  • 批准号:
    22K01963
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了