Dynamical Systems, Rigidity and Related Topics

动力系统、刚性及相关主题

基本信息

  • 批准号:
    0803880
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

The central theme of the proposed program is the study of various aspects of rigidity in dynamics. New methods and insights have been recently introduced by the PI and his collaborators which led to a significant progress in the problem of rigidity of invariant measures and the differentiable rigidity of orbit structure for actions of higher rank abelian groups. Advances achieved based on these methods engendered fruitful applications to Diophantine approximation problems in number theory and provided first examples of existence of invariant geometric structure for large classes of actions. There are several major directions in the proposed program:1.Local differentiable rigidity for partially hyperbolic and parabolic actions of higher rank abelian groups with the emphasis on the combination of the dynamical systems, harmonic analysis/group representation and geometric methods.2. Finding new methods in the theory of measure rigidity for algebraic dynamical systems.3. Existence of invariant geometric structures for general classes of actions of higher rank abelian groups determined by global topological, homotopical or dynamical conditions.4.Classification of Anosov systems up to differentiable conjugacy vis various classes of moduli.5.Construction of smooth realization of Gaussian dynamical systems. 6.Application of the theory of unitary group representations to the cohomological problems in dynamics.Mathematical concept of "rigidity" has many facets. Its simplest and most basic manifestations can be seen from the following elementary example: a small number of equations or inequalities of a special type may imply much larger number of equation. For example, if the arithmetic mean on n numbers coincides with the geometric mean (one equation) then the numbers are all equal ( n-1 equations). An example from the PI's earlier research is conceptually similar albeit technically much more sophisticated: a compact surface of negative curvature, i.e. a bounded geometric shape where any geodesic triangle has the sum of its angles less than 180 degrees, for which two numbers characterizing global and statistical volume growth (topological and metric entropy) coincide has constant negative curvature, i.e. the sum of the angles of a geodesic triangle is uniquely determined by the area. The research under the present grant involves both deeper investigation of rigidity phenomena for dynamical systems with multi-dimensional time, and expansion and development of striking application to several areas of mathematics and mathematical physics. Here is an interpretation of some results from the area 3. above. Investigation of chaotic behavior in deterministic dynamical systems plays a central role in application of the modern theory of dynamical systems to various areas on natural and social sciences. Here is the crucial difficulty which impedes efforts in more comprehensive understanding of important models: while it is often relatively easy to establish existence of some initial conditions which produce chaotic behavior, proving chaotic behavior of most or many (in the sense of volume in the phase space) is beyond the present on even anticipated mathematical methods. PI and his collaborators discovered that for systems with multidimensional time under certain very general conditions this difficulty is overcome: global conditions of topological or dynamical nature which a priori guarantee only existence of some chaotic orbits in fact imply existence of such orbits which fill positive volume in the phase space.
该计划的中心主题是研究动力学中刚性的各个方面。PI和他的合作者最近提出了新的方法和见解,导致在高阶阿贝尔群作用的不变测度的刚性和轨道结构的可微刚性问题上取得了重大进展。基于这些方法所取得的进展,在数论中的丢芬图近似问题上产生了富有成效的应用,并首次提供了大动作类的不变几何结构存在的例子。建议的方案有几个主要方向:1。高阶阿贝尔群的部分双曲和抛物作用的局部可微刚性,重点是动力学系统、调和分析/群表示和几何方法的结合。在代数动力系统测度刚性理论中寻找新的方法。由全局拓扑、同调或动态条件决定的高阶阿贝尔群的一般类作用的不变量几何结构的存在性。对各种模的可微共轭的Anosov系统的分类。构造高斯动力系统的光滑实现。6.酉群表示理论在动力学上同问题中的应用。数学上的“刚性”概念有许多方面。它最简单和最基本的表现可以从下面的基本例子中看到:一个特殊类型的少量方程或不等式可能意味着大量的方程。例如,如果n个数字的算术平均值与几何平均值重合(一个方程),那么这些数字都相等(n-1个方程)。PI早期研究的一个例子在概念上是相似的,尽管在技术上要复杂得多:一个负曲率的紧致曲面,即一个有界的几何形状,其中任何测地三角形的角度总和小于180度,其中两个表征全局和统计体积增长的数字(拓扑和度量熵)重合,具有恒定的负曲率,即测地三角形的角度总和唯一由面积决定。本基金的研究包括对多维时间动力系统的刚性现象的深入研究,以及在数学和数学物理的几个领域的显著应用的扩展和发展。以下是对区域3的一些结果的解释。以上。确定性动力系统混沌行为的研究在现代动力系统理论应用于自然科学和社会科学的各个领域中起着核心作用。这是阻碍对重要模型进行更全面理解的关键困难:虽然建立产生混沌行为的某些初始条件的存在性通常相对容易,但证明大多数或许多混沌行为(在相空间中的体积意义上)超出了目前甚至预期的数学方法。PI和他的合作者发现,对于具有多维时间的系统,在某些非常一般的条件下,这个困难被克服了:拓扑或动力性质的全局条件,先验地保证只存在一些混沌轨道,实际上意味着存在这样的轨道,在相空间中填充正体积。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anatole Katok其他文献

MASS program at penn state
  • DOI:
    10.1007/bf03025324
  • 发表时间:
    2009-01-12
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Anatole Katok;Svetlana Katok;Serge Tabachnikov
  • 通讯作者:
    Serge Tabachnikov

Anatole Katok的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anatole Katok', 18)}}的其他基金

A Comprehensive Program in Modern Dynamics with Emphasis on Rigidity
强调刚性的现代动力学综合方案
  • 批准号:
    1304830
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Semi-annual Workshop in Dynamical Systems and Related Topics at Penn State
宾夕法尼亚州立大学动力系统及相关主题半年度研讨会
  • 批准号:
    1343081
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
A comprehensive program in modern dynamics
现代动力学综合课程
  • 批准号:
    1002554
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
EMSW21-MCTP: Penn State MASS Program
EMSW21-MCTP:宾夕法尼亚州立大学 MASS 计划
  • 批准号:
    0943603
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Workshop in Dynamical Systems and Related Topics
动力系统及相关主题研讨会
  • 批准号:
    0940732
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EMSW21-MCTP: Penn State MASS Program
EMSW21-MCTP:宾夕法尼亚州立大学 MASS 计划
  • 批准号:
    0502205
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Dynamical Systems, Rigidity and Related Topics
动力系统、刚性及相关主题
  • 批准号:
    0505539
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Topics in Dynamical Systems and Ergodic Theory
动力系统和遍历理论主题
  • 批准号:
    0071339
  • 财政年份:
    2000
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Topics in Dynamical Systems, Ergodic Theory and Geometry
动力系统、遍历理论和几何主题
  • 批准号:
    9704776
  • 财政年份:
    1997
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topics in Dynamical Systems, Ergodic Theory, and Geometry
数学科学:动力系统、遍历理论和几何主题
  • 批准号:
    9404061
  • 财政年份:
    1994
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
  • 批准号:
    31971398
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Dynamical spectral rigidity and determination for billiard systems
台球系统的动态谱刚度及其测定
  • 批准号:
    RGPIN-2022-04188
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Conference: Flexibility and Rigidity in Dynamical Systems
会议:动力系统的灵活性和刚性
  • 批准号:
    2154392
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Digits, distributions, and rigidity in dynamical systems
动力系统中的数字、分布和刚度
  • 批准号:
    RGPIN-2016-04643
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Digits, distributions, and rigidity in dynamical systems
动力系统中的数字、分布和刚度
  • 批准号:
    RGPIN-2016-04643
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Digits, distributions, and rigidity in dynamical systems
动力系统中的数字、分布和刚度
  • 批准号:
    RGPIN-2016-04643
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Digits, distributions, and rigidity in dynamical systems
动力系统中的数字、分布和刚度
  • 批准号:
    RGPIN-2016-04643
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Digits, distributions, and rigidity in dynamical systems
动力系统中的数字、分布和刚度
  • 批准号:
    RGPIN-2016-04643
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Digits, distributions, and rigidity in dynamical systems
动力系统中的数字、分布和刚度
  • 批准号:
    RGPIN-2016-04643
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Quasi-symmetric rigidity in smooth dynamical systems
光滑动力系统中的拟对称刚度
  • 批准号:
    387658-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Postdoctoral Fellowships
Quasi-symmetric rigidity in smooth dynamical systems
光滑动力系统中的拟对称刚度
  • 批准号:
    387658-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了