Topics in Dynamical Systems, Ergodic Theory and Geometry
动力系统、遍历理论和几何主题
基本信息
- 批准号:9704776
- 负责人:
- 金额:$ 28.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2000-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project covers a classification of Anosov (normally hyperbolic) and certain classes of partially hyperbolic actions of higher-rank commutative groups, both discrete and continuous, on compact manifolds, classification of several classes of smooth actions of lattices in higher-rank semi-simple Lie groups, a systematic study of invariant measures for Anosov and partially hyperbolic algebraic actions of discrete and continuous higher-rank abelian groups, development of a general theory of hyperbolic measures for actions of higher-rank abelian groups, and developments of a uniform theory of invariant distributions for various classes of dynamical systems. Among the principal tools are smooth ergodic theory (Lyapunov characteristic exponents and non-uniform hyperbolicity), the theory of non-stationary normal forms, geometric super-rigidity and the theory of group representations. The theory of dynamical systems is the mathematical foundation of the rapidly developing fields of non-linear dynamics and chaos theory which provides these fields with their principal paradigms and tools of rigorous analysis. Those paradigms in turn play a key role in the development and analysis of mathematical models for numerous problems within natural and social sciences and engineering. The standard setup in dynamics considers time as one-dimensional, either discrete or continuous. One of the central conclusions is that in a variety of situations, the orbit structure is rich and its robust features can be described by well-understood symbolic models. The research under the present grant looks at the situation when the time is multi-dimensional while the phase space is still finite-dinemsional, i.e. the state of a system under consideration can be described by a finite set of numerical parameters. The leading paradigms in these cases turn out to be strikingly different. On the one hand, the symbolic models are no longer valid. On the other, the orbit structure turn out to be "rigid", i.e. not only its robust f eatures, but much more subtle structure, including the fine statistics of asymptotic behavior, do not change under perturbations. The project intends to identify and systematically study a set of "universal models" which replace the symbolic models in the case of one-dimensional time.
该项目涵盖了Anosov的分类(通常是双曲的)和某些类的部分双曲作用的高阶交换群,离散和连续,在紧流形,分类的几类光滑作用的格在高阶半单李群,系统的研究不变措施Anosov和部分双曲代数作用的离散和连续高阶交换群,发展了高阶阿贝尔群作用的双曲测度的一般理论,以及发展了各类动力系统的不变分布的统一理论。 主要工具包括光滑遍历理论(李雅普诺夫特征指数和非一致双曲性)、非平稳范式理论、几何超刚性和群表示理论。 动力系统理论是快速发展的非线性动力学和混沌理论领域的数学基础,为这些领域提供了严格分析的主要范式和工具。这些范式反过来又在自然科学和社会科学以及工程学中的许多问题的数学模型的开发和分析中发挥着关键作用。 动力学中的标准设置将时间视为一维,离散或连续。其中一个主要结论是,在各种情况下,轨道结构是丰富的,其强大的功能,可以用很好理解的符号模型来描述。 现时拨款的研究着眼于时间是多维的,而相空间仍然是有限维的情况,即所考虑的系统的状态可以用一组有限的数值参数来描述。 在这些情况下,主要的范式是惊人的不同。一方面,象征性的模式不再有效。另一方面,轨道结构是“刚性的”,即不仅轨道的鲁棒性不受扰动的影响,而且轨道的精细结构(包括渐近行为的精细统计量)也不受扰动的影响。该项目旨在确定和系统地研究一套“通用模型”,以取代一维时间的符号模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anatole Katok其他文献
MASS program at penn state
- DOI:
10.1007/bf03025324 - 发表时间:
2009-01-12 - 期刊:
- 影响因子:0.400
- 作者:
Anatole Katok;Svetlana Katok;Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Anatole Katok的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anatole Katok', 18)}}的其他基金
A Comprehensive Program in Modern Dynamics with Emphasis on Rigidity
强调刚性的现代动力学综合方案
- 批准号:
1304830 - 财政年份:2013
- 资助金额:
$ 28.25万 - 项目类别:
Continuing Grant
Semi-annual Workshop in Dynamical Systems and Related Topics at Penn State
宾夕法尼亚州立大学动力系统及相关主题半年度研讨会
- 批准号:
1343081 - 财政年份:2013
- 资助金额:
$ 28.25万 - 项目类别:
Standard Grant
A comprehensive program in modern dynamics
现代动力学综合课程
- 批准号:
1002554 - 财政年份:2010
- 资助金额:
$ 28.25万 - 项目类别:
Continuing Grant
EMSW21-MCTP: Penn State MASS Program
EMSW21-MCTP:宾夕法尼亚州立大学 MASS 计划
- 批准号:
0943603 - 财政年份:2010
- 资助金额:
$ 28.25万 - 项目类别:
Standard Grant
Workshop in Dynamical Systems and Related Topics
动力系统及相关主题研讨会
- 批准号:
0940732 - 财政年份:2009
- 资助金额:
$ 28.25万 - 项目类别:
Standard Grant
Dynamical Systems, Rigidity and Related Topics
动力系统、刚性及相关主题
- 批准号:
0803880 - 财政年份:2008
- 资助金额:
$ 28.25万 - 项目类别:
Standard Grant
EMSW21-MCTP: Penn State MASS Program
EMSW21-MCTP:宾夕法尼亚州立大学 MASS 计划
- 批准号:
0502205 - 财政年份:2005
- 资助金额:
$ 28.25万 - 项目类别:
Continuing Grant
Dynamical Systems, Rigidity and Related Topics
动力系统、刚性及相关主题
- 批准号:
0505539 - 财政年份:2005
- 资助金额:
$ 28.25万 - 项目类别:
Continuing Grant
Topics in Dynamical Systems and Ergodic Theory
动力系统和遍历理论主题
- 批准号:
0071339 - 财政年份:2000
- 资助金额:
$ 28.25万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Dynamical Systems, Ergodic Theory, and Geometry
数学科学:动力系统、遍历理论和几何主题
- 批准号:
9404061 - 财政年份:1994
- 资助金额:
$ 28.25万 - 项目类别:
Continuing Grant
相似海外基金
Conference: Semi-annual Workshop in Dynamical Systems and Related Topics at Penn State
会议:宾夕法尼亚州立大学动态系统及相关主题半年度研讨会
- 批准号:
2230142 - 财政年份:2022
- 资助金额:
$ 28.25万 - 项目类别:
Standard Grant
Semi-annual Workshop in Dynamical Systems and Related Topics at Penn State
宾夕法尼亚州立大学动力系统及相关主题半年度研讨会
- 批准号:
1800679 - 财政年份:2018
- 资助金额:
$ 28.25万 - 项目类别:
Standard Grant
Collaborative Research: Topics in Infinite-Dimensional and Stochastic Dynamical Systems
合作研究:无限维和随机动力系统主题
- 批准号:
1413603 - 财政年份:2014
- 资助金额:
$ 28.25万 - 项目类别:
Continuing Grant
Special Topics in Dynamical Systems: A New Mathematical Framework for the Design of Switching and Continuous Control Strategies
动力系统专题:切换和连续控制策略设计的新数学框架
- 批准号:
1436856 - 财政年份:2014
- 资助金额:
$ 28.25万 - 项目类别:
Standard Grant
Topics in number theory, dynamical systems and discrete geometry
数论、动力系统和离散几何主题
- 批准号:
1401224 - 财政年份:2014
- 资助金额:
$ 28.25万 - 项目类别:
Continuing Grant
Collaborative Research: Topics in Infinite-Dimensional and Stochastic Dynamical Systems
合作研究:无限维和随机动力系统主题
- 批准号:
1413060 - 财政年份:2014
- 资助金额:
$ 28.25万 - 项目类别:
Continuing Grant
Topics in Dynamical Systems: Attractors, Dimension, Lattice Models
动力系统主题:吸引子、维度、晶格模型
- 批准号:
1400027 - 财政年份:2014
- 资助金额:
$ 28.25万 - 项目类别:
Continuing Grant
Semi-annual Workshop in Dynamical Systems and Related Topics at Penn State
宾夕法尼亚州立大学动力系统及相关主题半年度研讨会
- 批准号:
1343081 - 财政年份:2013
- 资助金额:
$ 28.25万 - 项目类别:
Standard Grant
Dynamical Systems Special Topics: Dynamics of granular materials: jamming, avalanches, disorder, and localization
动力系统专题:颗粒材料动力学:干扰、雪崩、无序和定位
- 批准号:
1069224 - 财政年份:2011
- 资助金额:
$ 28.25万 - 项目类别:
Standard Grant
Topics in Dynamical Systems: Attractors, Dimension, Lattice Models
动力系统主题:吸引子、维度、晶格模型
- 批准号:
1101165 - 财政年份:2011
- 资助金额:
$ 28.25万 - 项目类别:
Continuing Grant














{{item.name}}会员




