Native Defects and Impurities in Zinc Oxide Studied with Optical and Magnetic Resonance Techniques

用光学和磁共振技术研究氧化锌中的天然缺陷和杂质

基本信息

项目摘要

Technical. This project makes use of a variety of optical and magnetic resonance techniques to determine fundamental behavior of atomic-scale defects in two wide-band-gap semiconducting materials, zinc oxide (ZnO) and aluminum nitride (AlN). Five specific research areas are tar-geted, four in ZnO and one in AlN. In ZnO, these include the trapping of hydrogen in oxygen va-cancies, the release of hidden hydrogen, the formation of defect complexes involving Zn vacan-cies, and the wavelength dependences of photoinduced changes in charge state. In AlN, the pri-mary donors, acceptors, and their simpler complexes will be identified and characterized. The proposed investigations in ZnO and AlN emphasize the use of EPR/ENDOR techniques to iden-tify models of specific defect complexes. At the same time, correlations with optical absorptions and emissions will be established. Sample modifications will include high-temperature anneals and electron irradiations. Magnetic resonance, optical, and electrical characterization tools will be employed; magnetic resonance techniques include electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR), and solid-state nuclear magnetic resonance (NMR). Optical techniques include photoluminescence (PL), photoluminescence excitation (PLE), Raman, and absorption. Temperature-dependent Hall effect measurements will provide electrical information. Non-Technical. The project addresses fundamental research issues in a topical area of elec-tronic/photonic materials science having technological relevance. This project includes graduate and undergraduate student mentoring, visits to non-PhD institutions in the region where the co-PIs will present talks, and the integration of wide-band-gap semiconductor-based research exam-ples (including demonstrations) into the materials physics courses at West Virginia University. Students will gain valuable experience in a wide variety of advanced spectroscopic materials characterization techniques. These students are also provided opportunities, through project col-laborators, to work with scientists at both government labs and other universities. Such interac-tions will ensure a practical applications-oriented side to our fundamental studies. On a broader scale, an increased understanding in the fundamental defect properties of these semiconductors may have significant societal impacts: improved light emitters in the ultraviolet and visible spec-tral regions, more efficient and cost-effective solid-state lighting, improved gas sensors, im-proved scintillators for portable nuclear detectors, photocatalysis of hydrogen, and emerging ar-eas--magnetic semiconductors and spintronics.
技术上的。该项目利用各种光学和磁共振技术来确定两种宽带隙半导体材料--氧化锌(ZnO)和氮化铝(AlN)--中原子尺度缺陷的基本行为。五个具体的研究领域是焦油目标,四个是氧化锌,一个是氮化铝。在氧化锌中,这包括在氧空位中捕获氢,释放隐藏的氢,形成与锌空位有关的缺陷络合物,以及电荷态光致变化的波长依赖性。在氮化铝中,主要的给体、受体及其简单的络合物将被识别和表征。对氧化锌和氮化铝的研究强调使用EPR/Endor技术来识别特定缺陷复合体的模型。同时,将建立与光吸收和发射的关联。样品的修改将包括高温退火和电子辐照。将使用磁共振、光学和电学表征工具;磁共振技术包括电子顺磁共振(EPR)、电子-核双共振(Endor)和固态核磁共振(核磁共振)。光学技术包括光致发光(PL)、光致发光激发(PLE)、拉曼和吸收。依赖于温度的霍尔效应测量将提供电学信息。非技术性。该项目涉及具有技术相关性的电子/光子材料科学专题领域的基础研究问题。该项目包括研究生和本科生指导,访问该地区的非博士机构,在那里联合PIS将介绍演讲,并将宽带隙半导体为基础的研究考试(包括演示)纳入西弗吉尼亚大学的材料物理课程。学生将在各种先进的光谱材料表征技术方面获得宝贵的经验。这些学生还通过项目合作者获得了与政府实验室和其他大学的科学家合作的机会。这样的互动将确保我们的基础研究以实际应用为导向。在更广泛的范围内,对这些半导体的基本缺陷性质的了解的增加可能会产生重大的社会影响:改善紫外线和可见光区域的光发射器、更高效和更具成本效益的固态照明、改进的气体传感器、改进的便携式核探测器的闪烁体、氢的光催化以及新兴的领域--磁性半导体和自旋电子学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Larry Halliburton其他文献

Larry Halliburton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Larry Halliburton', 18)}}的其他基金

Intrinsic and Extrinsic Donors and Acceptors in Zinc Oxide Crystals
氧化锌晶体中的内在和外在供体和受体
  • 批准号:
    0508140
  • 财政年份:
    2005
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Continuing Grant
Development of Ternary Chalcopyrite Semiconductors for Nonlinear Optical Applications in the Mid-Infrared
用于中红外非线性光学应用的三元黄铜矿半导体的开发
  • 批准号:
    9807128
  • 财政年份:
    1998
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Continuing Grant
Acquisition of a Pulsed Electron Beam System (Materials Research)
脉冲电子束系统的采集(材料研究)
  • 批准号:
    8501017
  • 财政年份:
    1985
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Standard Grant
Structure and Behavior of Point Defects in Electro-Optic Materials: Niobates, Tantalates, and Tungstates (Materials Research)
电光材料中点缺陷的结构和行为:铌酸盐、钽酸盐和钨酸盐(材料研究)
  • 批准号:
    8020419
  • 财政年份:
    1981
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Continuing Grant
Magnetic Resonance Studies of Defect Behavior in Perovskite And Rutile Structured Materials
钙钛矿和金红石结构材料中缺陷行为的磁共振研究
  • 批准号:
    7708465
  • 财政年份:
    1977
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Continuing Grant
Magnetic Resonance Study of Trapped Hole Centers in Perovskite Structured Crystals
钙钛矿结构晶体中俘获空穴中心的磁共振研究
  • 批准号:
    7307656
  • 财政年份:
    1973
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Standard Grant

相似海外基金

Development of high-temperature superconducting coated conductors with superior mass productivity where defects and impurities function cooperatively
缺陷与杂质协同作用,开发具有优异量产性的高温超导涂层导体
  • 批准号:
    22K04703
  • 财政年份:
    2022
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Instrument to identify defects and impurities in wide band gap semiconductors via excited states
通过激发态识别宽带隙半导体中的缺陷和杂质的仪器
  • 批准号:
    EP/P015581/1
  • 财政年份:
    2017
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Research Grant
Effects of impurities and defects on the magnetization plateau in multiferroic materials
杂质和缺陷对多铁材料磁化平台的影响
  • 批准号:
    16K05420
  • 财政年份:
    2016
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
"Impurities, Defects, and Interfaces in Bulk and Nanoscale Condensed Matter (Meta)Materials"
“块状和纳米级凝聚态(元)材料中的杂质、缺陷和界面”
  • 批准号:
    250045-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum and classical light emitters in silicon: impurities and complex defects for nanophotonics
硅中的量子和经典发光体:纳米光子学的杂质和复杂缺陷
  • 批准号:
    286945677
  • 财政年份:
    2015
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Research Grants
"Impurities, Defects, and Interfaces in Bulk and Nanoscale Condensed Matter (Meta)Materials"
“块状和纳米级凝聚态(元)材料中的杂质、缺陷和界面”
  • 批准号:
    250045-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Discovery Grants Program - Individual
"Impurities, Defects, and Interfaces in Bulk and Nanoscale Condensed Matter (Meta)Materials"
“块状和纳米级凝聚态(元)材料中的杂质、缺陷和界面”
  • 批准号:
    250045-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Discovery Grants Program - Individual
Native Point Defects, Electronically Active Impurities, and Plasmonics at ZnO Interfaces
ZnO 界面上的本征点缺陷、电子活性杂质和等离激元
  • 批准号:
    1305193
  • 财政年份:
    2013
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Continuing Grant
"Impurities, Defects, and Interfaces in Bulk and Nanoscale Condensed Matter (Meta)Materials"
“块状和纳米级凝聚态(元)材料中的杂质、缺陷和界面”
  • 批准号:
    250045-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 41.91万
  • 项目类别:
    Discovery Grants Program - Individual
The science and engineering of defects and impurities in photovoltaic silicon
光伏硅缺陷与杂质的科学与工程
  • 批准号:
    FT110100680
  • 财政年份:
    2012
  • 资助金额:
    $ 41.91万
  • 项目类别:
    ARC Future Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了