Native Point Defects, Electronically Active Impurities, and Plasmonics at ZnO Interfaces

ZnO 界面上的本征点缺陷、电子活性杂质和等离激元

基本信息

  • 批准号:
    1305193
  • 负责人:
  • 金额:
    $ 55.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

Technical Description: This research project examines the use of native point defects, degenerate doping, and nanostructures to advance the understanding of contact rectification, photon-plasmon coupling, and nanocontacts at ZnO interfaces. It builds on existing capabilities to identify the electrical activity of native point defects on a nanometer scale using optical and electronic techniques, to measure their effect on carrier densities and atomic dopant concentrations quantitatively, and to controllably introduce or suppress these native point defects using nanoscale surface science techniques. Native point defects have a major effect on ZnO Schottky barrier heights, and their interplay with dopant impurities influence plasmonic-resonance wavelengths in ZnO. Because ZnO exhibits a wide range of contact rectification with metals, it can serve to test the relative contributions of thermionic, tunneling, and hopping transport through ZnO-metal interfaces on both a macroscopic and nanometer scale, and the balance of physical mechanisms can be used to understand barriers to charge transport for a wide range of compound semiconductor junctions. The carrier densities influenced by native point defects can in turn alter the dielectric response of ZnO and thus the plasmon-resonance frequency used to couple light waves to ultrahigh frequency electronics. This project employs a combination of growth, plasma processing, and atomic indiffusion to control near-interface doping and native point defects on a nanometer scale for both barrier rectification and plasmonic coupling.Non-technical Description: Semiconductor defects are imperfections such as missing atoms or impurities in otherwise perfect semiconductor crystals. They can be electrically-active, altering the amount of electrical charge free to travel inside transistors, lasers, and other electronic devices. They can also serve as shortcuts for charge to move through electronic barriers usually designed to block such charge movement for transistor switching, charge storage, or carrier confined light emission. The influence of these defects in charge movement across ZnO interfaces provides a test bed to understand and control other semiconductors, an issue starting when these materials were first used for electronics. Their control can enable high carrier densities for transparent electronics such as heads-up displays and smart windows, high positive charge densities for lasers, and control of the coupling between light waves and electronic circuits at wavelengths important for telecommunications. The project provides training of graduate students, undergraduates, and high school women in both basic scientific laboratory techniques and advanced micro- and optoelectronic concepts. Students interact directly with international collaborators at the University of Oslo, Sweden, Aalto University, Finland, and CNRS / CRHEA, France. The project involves and supports women at the high school through the Columbus School for Girls' summer research internship program, building on NSF core funding with support from several Ohio State University institutions.
技术描述:本研究项目探讨了使用原生点缺陷、简并掺杂和纳米结构来促进对ZnO界面上的接触整流、光子-等离子体耦合和纳米接触的理解。它建立在现有能力的基础上,利用光学和电子技术在纳米尺度上识别原生点缺陷的电活动,定量测量它们对载流子密度和原子掺杂浓度的影响,并利用纳米尺度表面科学技术可控地引入或抑制这些原生点缺陷。原生点缺陷对ZnO肖特基势垒高度有重要影响,它们与掺杂杂质的相互作用影响ZnO中的等离子共振波长。由于ZnO与金属表现出广泛的接触整流,因此可以在宏观和纳米尺度上测试通过ZnO-金属界面的热离子、隧道和跳变输运的相对贡献,并且物理机制的平衡可以用来理解各种化合物半导体结的电荷输运障碍。受原生点缺陷影响的载流子密度反过来会改变ZnO的介电响应,从而改变用于将光波耦合到超高频电子器件的等离子体共振频率。本项目采用生长、等离子体加工和原子扩散相结合的方法,在纳米尺度上控制近界面掺杂和原生点缺陷,以实现势垒整流和等离子体耦合。非技术描述:半导体缺陷是指在完美的半导体晶体中缺少原子或杂质等缺陷。它们具有电活性,可以改变在晶体管、激光器和其他电子设备内部自由流动的电荷量。它们也可以作为电荷穿过电子屏障的捷径,这些电子屏障通常是为了晶体管开关、电荷存储或载流子受限光发射而设计的。这些缺陷对电荷在ZnO界面上移动的影响为理解和控制其他半导体提供了一个测试平台,当这些材料首次用于电子产品时,这个问题就开始了。他们的控制可以实现透明电子产品的高载流子密度,如平视显示器和智能窗口,激光器的高正电荷密度,以及控制光波和电子电路之间的耦合,波长对电信很重要。该项目为研究生、本科生和高中女生提供基本的科学实验室技术和先进的微光电概念的培训。学生直接与瑞典奥斯陆大学、芬兰阿尔托大学和法国CNRS / CRHEA的国际合作者进行互动。该项目通过哥伦布女子学校的暑期研究实习项目,在美国国家科学基金会核心资金的基础上,得到俄亥俄州立大学几个机构的支持,参与并支持高中的女性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonard Brillson其他文献

Leonard Brillson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonard Brillson', 18)}}的其他基金

Collaborative Research: Defects and Dopants in Critical Wide Band Gap Semiconductors - ZnO, InGaZnO, Ga2O3 and ScN
合作研究:关键宽带隙半导体中的缺陷和掺杂剂 - ZnO、InGaZnO、Ga2O3 和 ScN
  • 批准号:
    1800130
  • 财政年份:
    2018
  • 资助金额:
    $ 55.66万
  • 项目类别:
    Standard Grant
Localized States, Chemical Reactions, and Charge Transport at ZnO Surfaces and Interfaces
ZnO 表面和界面的局域态、化学反应和电荷传输
  • 批准号:
    0803276
  • 财政年份:
    2008
  • 资助金额:
    $ 55.66万
  • 项目类别:
    Standard Grant
GOALI: Growth-Dependent Identification and Control of Bulk and Interface Defects in ZnO
目标:ZnO 中体相和界面缺陷的生长依赖性识别和控制
  • 批准号:
    0513968
  • 财政年份:
    2005
  • 资助金额:
    $ 55.66万
  • 项目类别:
    Continuing Grant
ACT-SGER: Charge Exchange and Chemical Structure at Protein-Semiconductor Interfaces
ACT-SGER:蛋白质-半导体界面的电荷交换和化学结构
  • 批准号:
    0346428
  • 财政年份:
    2003
  • 资助金额:
    $ 55.66万
  • 项目类别:
    Standard Grant
FRG: Morphological Electronic and Chemical Structure of Lattice-Mismatched III-V Heterojunctions
FRG:晶格失配 III-V 异质结的形态电子结构和化学结构
  • 批准号:
    0076362
  • 财政年份:
    2000
  • 资助金额:
    $ 55.66万
  • 项目类别:
    Continuing Grant
Development of Instrumentation for Combined Secondary Ion Mass Spectrometry, Cathodoluminescence Spectroscopy, and Chemical Processing
二次离子质谱、阴极发光光谱和化学加工组合仪器的开发
  • 批准号:
    0079438
  • 财政年份:
    2000
  • 资助金额:
    $ 55.66万
  • 项目类别:
    Standard Grant
Interface Electronic Properties and Growth Parameters of Heterovalent Semiconductor Heterojunctions
异价半导体异质结的界面电子性质和生长参数
  • 批准号:
    9711851
  • 财政年份:
    1997
  • 资助金额:
    $ 55.66万
  • 项目类别:
    Standard Grant

相似国自然基金

解大型非对称鞍点(Saddle Point) 问题的有效算法的研究
  • 批准号:
    60573157
  • 批准年份:
    2005
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of plastic functionality electronic devices based on elementary processes of point defects fluid and condensation
基于点缺陷流体和冷凝基本过程的塑料功能电子器件的开发
  • 批准号:
    23H01687
  • 财政年份:
    2023
  • 资助金额:
    $ 55.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Correlated excited states of point defects in insulators
职业:绝缘体中点缺陷的相关激发态
  • 批准号:
    2237674
  • 财政年份:
    2023
  • 资助金额:
    $ 55.66万
  • 项目类别:
    Continuing Grant
Identification of point defects in GaN materials and their impact on device performance
GaN 材料中点缺陷的识别及其对器件性能的影响
  • 批准号:
    2734689
  • 财政年份:
    2022
  • 资助金额:
    $ 55.66万
  • 项目类别:
    Studentship
Effective use of characteristics of Bi-based III-V compound semiconductors by controlling point defects density inside their crystals grown at low temperatures
通过控制低温生长晶体内部的点缺陷密度,有效利用Bi基III-V族化合物半导体的特性
  • 批准号:
    21H01829
  • 财政年份:
    2021
  • 资助金额:
    $ 55.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Developing models for CALPHAD-type phase diagrams that directly consider the effect of structural point defects
开发直接考虑结构点缺陷影响的 CALPHAD 型相图模型
  • 批准号:
    19K15273
  • 财政年份:
    2019
  • 资助金额:
    $ 55.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Realization of a method to visualize the distribution of threading dislocations and point defects in semiconductor crystals
半导体晶体中穿透位错和点缺陷分布可视化方法的实现
  • 批准号:
    18K19028
  • 财政年份:
    2018
  • 资助金额:
    $ 55.66万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Polarity control and point defects in low temperature grown polycrystalline zinc oxide thin films
低温生长多晶氧化锌薄膜的极性控制和点缺陷
  • 批准号:
    17K06356
  • 财政年份:
    2017
  • 资助金额:
    $ 55.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Atomic point defects in two-dimensional materials
二维材料中的原子点缺陷
  • 批准号:
    1904848
  • 财政年份:
    2017
  • 资助金额:
    $ 55.66万
  • 项目类别:
    Studentship
Action-at-a-Distance via Ice-Like point Defects: Relating Catalytic Gas-Hydrate Formation and Antifreeze Protein Action to Epitaxial Growth of Gas Hydrates
通过类冰点缺陷的远距离作用:将催化气体水合物形成和防冻蛋白作用与气体水合物外延生长联系起来
  • 批准号:
    1566600
  • 财政年份:
    2016
  • 资助金额:
    $ 55.66万
  • 项目类别:
    Standard Grant
CAREER: Point Defects in Two-dimensional Material Systems: Fundamentals and New Perspectives
职业:二维材料系统中的点缺陷:基础知识和新视角
  • 批准号:
    1552220
  • 财政年份:
    2016
  • 资助金额:
    $ 55.66万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了