Observations of the Spatial-Statistical Structures of Precipitation
降水空间统计结构的观测
基本信息
- 批准号:0804440
- 负责人:
- 金额:$ 44.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-10-01 至 2012-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Radar-derived estimates of rainfall intensity and accumulations offer unsurpassed spatial and temporal resolution, and are thus critical not only for issuance of flash-flood warnings but more broadly as input to agricultural and hydrological models for cropland and river/streamflow management. These measurements are thus a critically important product of the nationwide WSR-88D "NEXRAD" radar network. This research effort is focused on improved rainfall estimates through detection of departures from well-behaved "Rayleigh-type" radar signal behavior that may induce errors in deduced rainfall. The presumption that well-behaved Rayleigh-type statistics dominate observed storm properties is at the foundation of current radar-based precipitation estimation techniques. Though strong spatial gradients of rainfall intensity characteristic of thunderstorms are one potential source of non-Rayleigh signal behavior, research suggests that this complication may also arise in the context of more homogeneous precipitation for certain types of radars and radar scanning strategies (including measurements of differential radar reflectivity and derived hydrometeor type from polarized radars). In extreme cases--again generally associated with the heaviest areas of precipitation--induced errors may locally approach the magnitude of the derived rain rate itself. Within the context of this study, the existence of this statistical complication will be conveyed via computation of a "clustering index (CI)." With the advent of high-resolution weather forecast models, radar observations will likely soon be assimilated into these in real-time to help better guide their predictions. The ability to reduce radar errors (or even simply better quantify the degree of uncertainty inherent in these measurements) would be of particular value in the context of modern data assimilation schemes. This proposal seeks to process high-resolution radar data collected by the NSF-supported CHILL radar in eastern Colorado to better relate the volumetric structure and evolution of CI anomalies to storm morphology and underlying cloud microphysical processes, as well as to extend CI measurements to snow, graupel and hail events. Other potential contributors to radar reflectivity bias (including "Bragg scattering," generally regarded as arising from the turbulent mixing of media with differing indices of refraction, as may occur at cloud/plume edges) will also be examined. The availability of high resolution measurements from CHILL (viz. radial data spacing as fine as 30 m) will further facilitate this work. Subsidiary efforts will address independent data sources such as surface-based disdrometer raindrop size distributions to shed additional light on non-Rayleigh precipitation behavior. The intellectual merit of this effort thus focuses on improved radar signal processing and associated understanding of the structure and dynamics of a wide variety of precipitating clouds. As suggested above, Broader Impacts will include the potential for appreciably improved measurements and short-term forecasts of precipitation intensity and amount.
由雷达得出的降雨强度和累积估计提供了无与伦比的空间和时间分辨率,因此不仅对发布突发洪水警报至关重要,而且更广泛地作为农田和河流/溪流管理的农业和水文模型的投入。因此,这些测量是全国WSR-88D“NEXRAD”雷达网络的一个至关重要的产品。这项研究工作的重点是通过检测偏离良好的“瑞利型”雷达信号行为来改进降雨量估计,这些信号行为可能会导致推断降雨量的误差。良好的瑞利型统计量主导观测到的风暴特性的假设是当前基于雷达的降水估计技术的基础。虽然雷暴特征的强降雨强度空间梯度是非瑞利信号行为的一个潜在来源,但研究表明,对于某些类型的雷达和雷达扫描策略(包括差分雷达反射率的测量和从极化雷达导出的水流星类型)来说,这种复杂性也可能出现在更均匀降水的背景下。在极端情况下——同样通常与降水最严重的地区有关——引起的误差可能在局部接近推导出的降雨率本身的大小。在本研究的背景下,这种统计复杂性的存在将通过计算“聚类指数(CI)”来传达。随着高分辨率天气预报模型的出现,雷达观测可能很快就会被实时吸收,以帮助更好地指导他们的预测。在现代数据同化方案的背景下,减少雷达误差(或甚至只是更好地量化这些测量中固有的不确定性程度)的能力将具有特别的价值。该提案旨在处理由美国国家科学基金会支持的科罗拉多州东部的CHILL雷达收集的高分辨率雷达数据,以更好地将CI异常的体积结构和演变与风暴形态和底层云微物理过程联系起来,并将CI测量扩展到雪、霰和冰雹事件。雷达反射率偏差的其他潜在因素(包括“布拉格散射”,通常被认为是由具有不同折射率的介质的湍流混合引起的,如可能发生在云/羽流边缘)也将进行研究。从CHILL获得的高分辨率测量(即径向数据间距精确到30米)将进一步促进这项工作。辅助工作将处理独立数据源,如基于地表的分差仪雨滴大小分布,以进一步阐明非瑞利降水行为。因此,这项工作的智力价值集中在改进雷达信号处理和对各种降水云的结构和动力学的相关理解上。如上所述,更广泛的影响将包括显著改进降水强度和数量的测量和短期预报的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arthur Jameson其他文献
Arthur Jameson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arthur Jameson', 18)}}的其他基金
Collaborative Research to Explore the Spatial/Temporal Statistical-Physical Structures of Rain in the Vertical Plane
探索垂直平面降雨时空统计物理结构的合作研究
- 批准号:
2001343 - 财政年份:2020
- 资助金额:
$ 44.83万 - 项目类别:
Standard Grant
Collaborative Research: The Relationship of the Spatial/Temporal Variability of Rain to Scaling
合作研究:降雨的时空变化与尺度的关系
- 批准号:
1823072 - 财政年份:2018
- 资助金额:
$ 44.83万 - 项目类别:
Standard Grant
Collaborative Research: The Meteorological Variability of the Two Dimensional/Temporal Structures of Drop Size Distributions and Rain
合作研究:雨滴尺寸分布和降雨的二维/时间结构的气象变化
- 批准号:
1532423 - 财政年份:2015
- 资助金额:
$ 44.83万 - 项目类别:
Continuing Grant
Collaborative Research: Characterization of the Two-dimensional/Temporal Mosaic of Drop Size Distributions and Spatial Variability (Structure) in Rain
合作研究:雨中液滴尺寸分布和空间变化(结构)的二维/时间镶嵌特征
- 批准号:
1230087 - 财政年份:2012
- 资助金额:
$ 44.83万 - 项目类别:
Standard Grant
On the Measurement and Potential Applications of Non-Rayleigh Signal Statistics to Studies of Clouds and Rain
关于非瑞利信号统计在云雨研究中的测量和潜在应用
- 批准号:
0531996 - 财政年份:2005
- 资助金额:
$ 44.83万 - 项目类别:
Continuing Grant
Addressing the Problems of Spatial Resolution and Adequate Sampling in Clustered Clouds and Rain
解决云雨中的空间分辨率和充分采样问题
- 批准号:
0242418 - 财政年份:2003
- 资助金额:
$ 44.83万 - 项目类别:
Continuing Grant
The Effects of Stochastic Rainfall Clustering on Radar Measurements
随机降雨聚类对雷达测量的影响
- 批准号:
0000291 - 财政年份:2000
- 资助金额:
$ 44.83万 - 项目类别:
Continuing Grant
Do Poisson Statistics Describe the Spatial Distribution of Cloud Droplets and Raindrops?
泊松统计可以描述云滴和雨滴的空间分布吗?
- 批准号:
9708657 - 财政年份:1997
- 资助金额:
$ 44.83万 - 项目类别:
Standard Grant
The Effects of Stochastic Rainfall Clustering on Radar Measurements
随机降雨聚类对雷达测量的影响
- 批准号:
9712075 - 财政年份:1997
- 资助金额:
$ 44.83万 - 项目类别:
Continuing Grant
Validation and Meteorological Applications of Quantitative Radar Rain Measurements
定量雷达雨量测量的验证和气象应用
- 批准号:
9419523 - 财政年份:1996
- 资助金额:
$ 44.83万 - 项目类别:
Continuing Grant
相似国自然基金
高铁对欠发达省域国土空间协调(Spatial Coherence)影响研究与政策启示-以江西省为例
- 批准号:52368007
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高铁影响空间失衡(Spatial Inequality)的多尺度变异机理的理论和实证研究
- 批准号:51908258
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Integrated experimental and statistical tools for ultra-high-throughput spatial transcriptomics
用于超高通量空间转录组学的集成实验和统计工具
- 批准号:
10727130 - 财政年份:2023
- 资助金额:
$ 44.83万 - 项目类别:
ATD: Statistical Modeling of Spatial Temporal Human Mobility Flows from Aggregated Mobile Phone Data
ATD:根据聚合的移动电话数据对时空人类移动流进行统计建模
- 批准号:
2220231 - 财政年份:2023
- 资助金额:
$ 44.83万 - 项目类别:
Standard Grant
CAREER: The effects of spatial structure and heterogeneity on local adaptation, diversification, and dispersal evolution: Experimental tests and statistical models
职业:空间结构和异质性对局部适应、多样化和分散进化的影响:实验测试和统计模型
- 批准号:
2239197 - 财政年份:2023
- 资助金额:
$ 44.83万 - 项目类别:
Continuing Grant
Statistical methods for studying cell-cell interactions using spatial transcriptomics for Alzheimer's disease
使用空间转录组学研究阿尔茨海默病细胞间相互作用的统计方法
- 批准号:
10554331 - 财政年份:2022
- 资助金额:
$ 44.83万 - 项目类别:
Statistical Modelling of Complex Spatial Extreme Phenomena
复杂空间极端现象的统计建模
- 批准号:
RGPIN-2022-05001 - 财政年份:2022
- 资助金额:
$ 44.83万 - 项目类别:
Discovery Grants Program - Individual
Statistical Modelling of Complex Spatial Extreme Phenomena
复杂空间极端现象的统计建模
- 批准号:
DGECR-2022-00461 - 财政年份:2022
- 资助金额:
$ 44.83万 - 项目类别:
Discovery Launch Supplement
Statistical approaches for spatial genomics at single cell resolution
单细胞分辨率空间基因组学的统计方法
- 批准号:
DE220100964 - 财政年份:2022
- 资助金额:
$ 44.83万 - 项目类别:
Discovery Early Career Researcher Award
Statistical methods for studying cell-cell interactions using spatial transcriptomics for Alzheimer's disease
使用空间转录组学研究阿尔茨海默病细胞间相互作用的统计方法
- 批准号:
10354741 - 财政年份:2022
- 资助金额:
$ 44.83万 - 项目类别:
Collaborative Research: Statistical Inference for High-dimensional Spatial-Temporal Process Models
合作研究:高维时空过程模型的统计推断
- 批准号:
2113779 - 财政年份:2021
- 资助金额:
$ 44.83万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Inference for High-dimensional Spatial-Temporal Process Models
合作研究:高维时空过程模型的统计推断
- 批准号:
2113778 - 财政年份:2021
- 资助金额:
$ 44.83万 - 项目类别:
Standard Grant