Collaborative Research: Statistical Inference for High-dimensional Spatial-Temporal Process Models
合作研究:高维时空过程模型的统计推断
基本信息
- 批准号:2113779
- 负责人:
- 金额:$ 12.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Spatial data science and other emerging technologies related to Geographic Information Systems are increasingly conspicuous in scientific discoveries. Scientists in a variety of disciplines today have unprecedented access to massive spatial and temporal databases comprising high resolution remote sensed measurements. Statistical modeling and analysis for such data need to account for spatial associations and variations at multiple levels while attempting to recognize underlying patterns and potentially complex relationships. Traditional statistical hypothesis testing is no longer adequate for these scientific problems and statisticians are increasingly turning to specialized methods for analyzing complex spatial-temporal data. However, there continue to remain substantial theoretical and methodological bottlenecks with regard to the interpretation of statistical models. This project will address these problems by developing probabilistic machine learning tools for spatial-temporal Big Data that can have far-reaching public health, economic, environmental, and scientific implications. Several innovations in statistical theory, methodologies and computational algorithms are envisioned that will inform basic science and policy questions arising in diverse disciplines using geographic information sciences. Key educational components include dissemination of technologies across the scientific communities including data scientists, engineers, foresters, ecologists, and climate scientists. The Principal Investigators will train the next generation of data scientists through dissemination efforts for graduate students in STEM fields. The PIs aim to blend innovative theory, methods and applications to advance knowledge of spatial-temporal stochastic processes with an emphasis on their properties for high-dimensional inference. This domain of spatial statistics has witnessed a burgeoning of models and methods for Big Data analysis. New classes of models have emerged from the judicious use of directed acyclic graphs (DAGs) that are being applied to massive datasets comprising several millions of spatiotemporal coordinates. Theoretical explorations envisioned in this project will focus upon statistical inference on the process parameters and the underlying spatial process. The PIs intend to perform rigorous investigations into statistical inference for high-dimensional spatio-temporal processes to derive micro-ergodic parameters for such models that will be consistently estimable and, at the same time, yield consistent predictive inference. The PIs will develop new methodologies that cast high-dimensional stochastic processes into computationally practicable frameworks by embedding graphical Gaussian processes within hierarchical frameworks for jointly modeling highly multivariate spatial data. Innovative statistical theory and methods will be developed and used to construct sparsity-inducing graphical spatio-temporal models to accommodate massive numbers of outcomes and capture complex dependencies among variables across massive numbers of locations. The planned theoretical explorations into the inferential properties of newly emerging scalable spatio-temporal processes will produce novel statistical contributions. The PIs will provide probability-based uncertainty quantification and will substantially enhance the understanding of physical and natural processes underlying various problems in the physical, environmental and biomedical sciences and in public health.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
空间数据科学和其他与地理信息系统相关的新兴技术在科学发现中的地位日益突出。今天,各个学科的科学家都可以前所未有地访问由高分辨率遥感测量数据组成的海量空间和时间数据库。这些数据的统计建模和分析需要考虑多个级别的空间关联和变化,同时尝试识别潜在的模式和潜在的复杂关系。传统的统计假设检验已经不足以解决这些科学问题,统计学家们越来越多地转向专门的方法来分析复杂的时空数据。然而,在解释统计模型方面,仍然存在重大的理论和方法瓶颈。该项目将通过为时空大数据开发概率机器学习工具来解决这些问题,这些工具可能对公共卫生,经济,环境和科学产生深远的影响。统计理论、方法和计算算法方面的若干创新设想将为使用地理信息科学的不同学科中出现的基础科学和政策问题提供信息。关键的教育内容包括在科学界传播技术,包括数据科学家、工程师、林业工作者、生态学家和气候科学家。首席研究员将通过为STEM领域的研究生提供传播工作来培训下一代数据科学家。 PI旨在融合创新的理论,方法和应用,以推进时空随机过程的知识,重点是它们的高维推理属性。这个空间统计领域见证了大数据分析模型和方法的蓬勃发展。有向无环图(DAG)被应用于包含数百万个时空坐标的海量数据集,通过明智地使用DAG,已经出现了新的模型类别。在这个项目中设想的理论探索将集中在统计推断的过程参数和基本的空间过程。PI旨在对高维时空过程的统计推断进行严格的调查,以获得这些模型的微遍历参数,这些参数将是一致的可估计的,同时产生一致的预测推断。PI将开发新的方法,通过在分层框架中嵌入图形高斯过程,将高维随机过程转换为计算上可行的框架,以联合建模高度多元的空间数据。创新的统计理论和方法将被开发和用于构建稀疏诱导图形时空模型,以适应大量的结果,并捕捉跨大量位置的变量之间的复杂依赖关系。计划中的理论探索到新出现的可扩展的时空过程的推理特性将产生新的统计贡献。PI将提供基于概率的不确定性量化,并将大大提高物理和自然过程的理解,在物理,环境和生物医学科学和公共health.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hidden symmetries and limit laws in the extreme order statistics of the Laplace random walk
拉普拉斯随机游走极序统计中的隐藏对称性和极限定律
- DOI:10.1214/22-aop1572
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Pitman, Jim;Tang, Wenpin
- 通讯作者:Tang, Wenpin
One-dependent colorings of the star graph
星图的一相关着色
- DOI:10.1214/22-aap1920
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Liggett, Thomas M.;Tang, Wenpin
- 通讯作者:Tang, Wenpin
Parallel Search for Information in Continuous Time—Optimal Stopping and Geometry of the PDE
连续时间内的信息并行搜索——偏微分方程的最佳停止和几何
- DOI:10.1007/s00245-022-09862-3
- 发表时间:2022
- 期刊:
- 影响因子:1.8
- 作者:Ke, T. Tony;Tang, Wenpin;Villas-Boas, J. Miguel;Zhang, Yuming Paul
- 通讯作者:Zhang, Yuming Paul
A Class of Stochastic Games and Moving Free Boundary Problems
- DOI:10.1137/20m1322558
- 发表时间:2018-09
- 期刊:
- 影响因子:0
- 作者:Xin Guo;Wenpin Tang;Renyuan Xu
- 通讯作者:Xin Guo;Wenpin Tang;Renyuan Xu
Polynomial Voting Rules
多项式投票规则
- DOI:10.1287/moor.2023.0080
- 发表时间:2024
- 期刊:
- 影响因子:1.7
- 作者:Tang, Wenpin;Yao, David D.
- 通讯作者:Yao, David D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenpin Tang其他文献
The spans in Brownian motion
布朗运动中的跨度
- DOI:
10.1214/16-aihp749 - 发表时间:
2015 - 期刊:
- 影响因子:1.5
- 作者:
S. Evans;J. Pitman;Wenpin Tang - 通讯作者:
Wenpin Tang
DIFFUSION PROBABILISTIC MODELS
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Wenpin Tang - 通讯作者:
Wenpin Tang
Stability of shares in the Proof of Stake Protocol -- Concentration and Phase Transitions
权益证明协议中股份的稳定性——集中和相变
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Wenpin Tang - 通讯作者:
Wenpin Tang
Transporting random measures on the line and embedding excursions into Brownian motion
在线传输随机测量并将偏移嵌入布朗运动中
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:1.5
- 作者:
G. Last;Wenpin Tang;H. Thorisson - 通讯作者:
H. Thorisson
Consistency of the Buckley-Osthus model and the hierarchical preferential attachment model
Buckley-Osthus模型与层次优先依恋模型的一致性
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Xin Guo;Fengmin Tang;Wenpin Tang - 通讯作者:
Wenpin Tang
Wenpin Tang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wenpin Tang', 18)}}的其他基金
Stochastic Models with Random Times: Long-Time Behavior and Large Population Limit
具有随机时间的随机模型:长时间行为和大群体限制
- 批准号:
2206038 - 财政年份:2022
- 资助金额:
$ 12.09万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 12.09万 - 项目类别:
Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319592 - 财政年份:2023
- 资助金额:
$ 12.09万 - 项目类别:
Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
- 批准号:
2332442 - 财政年份:2023
- 资助金额:
$ 12.09万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247795 - 财政年份:2023
- 资助金额:
$ 12.09万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247794 - 财政年份:2023
- 资助金额:
$ 12.09万 - 项目类别:
Continuing Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
- 批准号:
2242084 - 财政年份:2023
- 资助金额:
$ 12.09万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312205 - 财政年份:2023
- 资助金额:
$ 12.09万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
- 批准号:
2327625 - 财政年份:2023
- 资助金额:
$ 12.09万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
- 批准号:
2308445 - 财政年份:2023
- 资助金额:
$ 12.09万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
$ 12.09万 - 项目类别:
Continuing Grant