New Developments of Nonlinear Dependent Models, with Applications in Genetics, Finance and the Environment
非线性相关模型的新发展及其在遗传学、金融和环境中的应用
基本信息
- 批准号:0804575
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High-dimensional and complex data are now collected routinely in the fields of environment, financial markets, and signal and image processing. A major challenge is to find methods to analyze the structure of such data sets, to fit models with desired dependence properties, and to identify and validate patterns. A major goal of the proposal is to make significant methodological and theoretical contributions to the important and challenging low-sample and high-dimension statistical inference problems such as dimension reduction in bio-informatics, and extreme dependence problems arising from environmental, and financial markets. The proposal consists of four important steps. First, the proposal pursues a series of developments of new measures for nonlinear dependencies. The investigator studies the limiting distributions of dependence measures (quotient correlation coefficients) and analyzes asymptotic powers when the dependence structures are specified. In DNA microarray data analysis, the quotient correlation is used to select the best feature subset of genes, and then the selected subset is used to predict classes for all sample data. Second, a tail dependent measure (a tail quotient correlation coefficient) with varying threshold is introduced. This measure is related to the study of statistics of multivariate extremes, and is used to assess asymptotic (in)dependencies in environmental variables. Third, the proposal includes the development of statistical estimation methods for asymptotically (in)dependent multivariate maxima and moving maxima processes. This allows one to efficiently study clustered spatial-temporal extreme observations. Fourth, the proposal studies GARCH(r,s) models with m-dependent residuals.The intellectual merit of the proposal in a first instance stems from an efficient dimension reduction approach using the quotient correlation concept. In DNA microarray data analysis, in which there are thousands of variables (genes) in gene expression profiles, and class prediction is an important problem. It is important to identify subsets of genes to work with, due to the high dimensional feature and small sample size of the data under investigation. The ultimate goal is to select the smallest subset of genes which contribute toward the classifications and predictions. Among existing gene selection methods, it is hard to find one which always performs better than the rest when applying them to different data sets. The proposal specifically aims at finding a solution for this. Beyond methodological merits and specific applications, the proposal also has a considerable broad impact. Throughout applications in diverse fields (like above), extreme risks play an important scientific, societal, as well as (possibly) political role. The dissemination of new statistical tools leading to a better understanding of the occurrence of joint extremes is of great importance. This can be well achieved at the level of new graduate courses, publications in journals aimed at a broad audience and in discussion with scientists from other fields. To name just one potential example where the proposal has great impact, let us consider financial risk management. Due to the establishment of new regulatory-rules for banking solvency (so-called Basel II proposal), banks have to come up (in their analysis of credit risk, for instance) with stress testing procedures which can immediately be formulated in terms of extremal co-movements. Similarly, in multi-line insurance, underwriters have to take care of joint large losses in many different lines of business. It is exactly for these kinds of applications that the proposal yields new tools.
现在,在环境、金融市场、信号和图像处理等领域,经常收集高维和复杂的数据。一个主要的挑战是找到方法来分析这样的数据集的结构,以适应模型所需的依赖性,并识别和验证模式。该提案的一个主要目标是为重要和具有挑战性的低样本和高维统计推断问题(如生物信息学中的降维问题以及环境和金融市场产生的极端依赖问题)做出重要的方法和理论贡献。该提案包括四个重要步骤。首先,该建议追求一系列的发展新措施的非线性依赖。调查研究的依赖措施(商相关系数)的极限分布,并分析渐近权力时,依赖结构指定。在DNA微阵列数据分析中,利用商相关性来选择基因的最佳特征子集,然后利用所选择的子集来预测所有样本数据的类别。其次,引入了一种具有可变阈值的尾相关测度(尾商相关系数)。这一措施涉及到多元极端统计的研究,并用于评估环境变量的渐近(不)依赖性。第三,该提案包括渐近(不)相关的多变量最大值和移动最大值过程的统计估计方法的发展。这使得人们能够有效地研究集群时空极端观测。第四,研究了残差m相依的Gestival(r,s)模型,其理论价值首先来自于利用商相关概念的有效降维方法。在DNA微阵列数据分析中,基因表达谱中的变量(基因)多达数千个,类别预测是一个重要的问题。由于研究数据的高维特征和小样本量,识别基因的子集是很重要的。 最终目标是选择有助于分类和预测的最小基因子集。在现有的基因选择方法中,很难找到一种在应用于不同数据集时总是比其他方法表现更好的方法。该提案的具体目的是为此找到解决办法。 除了方法上的优点和具体应用之外,该建议还具有相当广泛的影响。在不同领域的应用中(如上所述),极端风险发挥着重要的科学,社会以及(可能)政治作用。 传播新的统计工具,从而更好地了解联合极端事件的发生,这一点非常重要。在新的研究生课程、在面向广大读者的期刊上发表文章以及与其他领域的科学家进行讨论时,都可以很好地实现这一目标。仅举一个提案具有重大影响的潜在例子,让我们考虑金融风险管理。由于建立了新的银行偿付能力监管规则(所谓的巴塞尔II提案),银行必须提出(例如,在其信用风险分析中)压力测试程序,这些程序可以立即根据极端的共同运动来制定。同样,在多险种保险中,承保人必须处理许多不同险种的共同巨额损失。正是针对这些类型的应用,该提案产生了新的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhengjun Zhang其他文献
Efficient Hydrogen Evolution Reaction on Ni3S2 Nanorods with a P/N Bipolar Electrode Prepared by Dealloying Sulfurization of NiW Amorphous Alloys
NiW非晶合金脱合金硫化制备的P/N双极电极对Ni3S2纳米棒进行高效析氢反应
- DOI:
10.1021/acsaem.0c00690 - 发表时间:
2020-05 - 期刊:
- 影响因子:6.4
- 作者:
Jianyue Chen;Yunhan Ling;Zhaoxia Lu;Zhengjun Zhang - 通讯作者:
Zhengjun Zhang
Impact of heat on all-cause and cause-specific mortality: A multi-city study in Texas.
高温对全因和特定原因死亡率的影响:德克萨斯州的一项多城市研究。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:8.3
- 作者:
Chunyu Guo;Kevin Lanza;Dongying Li;Yuyu Zhou;K. Aunan;B. Loo;Jason Lee;B. Luo;Xiaoli Duan;Wangjian Zhang;Zhengjun Zhang;Shao Lin;Kai Zhang - 通讯作者:
Kai Zhang
An extension of max autoregressive models
最大自回归模型的扩展
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
P. Naveau;Zhengjun Zhang;Bin Zhu - 通讯作者:
Bin Zhu
Effects of Two Pilot Injection on Combustion and Emissions in a PCCI Diesel Engine
两次引燃喷射对 PCCI 柴油机燃烧和排放的影响
- DOI:
10.3390/en14061651 - 发表时间:
2021-03 - 期刊:
- 影响因子:3.2
- 作者:
Deqing Mei;Qisong Yu;Zhengjun Zhang;Shan Yue;Lizhi Tu - 通讯作者:
Lizhi Tu
Stock Market Interactions Driven by Large Declines
大幅下跌推动股市互动
- DOI:
10.2753/ree1540-496x5005s511 - 发表时间:
2014 - 期刊:
- 影响因子:4
- 作者:
Yong Ma;Wei;Zhengjun Zhang;Weidong Xu - 通讯作者:
Weidong Xu
Zhengjun Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhengjun Zhang', 18)}}的其他基金
Collaborative Proposal: Models and Methods for High Quantiles in Risk Quantification and Management
合作提案:风险量化和管理中高分位数的模型和方法
- 批准号:
2012298 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Max-Linear Competing Factor Models and Applications
最大线性竞争因子模型和应用
- 批准号:
1505367 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Quotient Correlation, Nonlinear Dependence, and Extreme Dependence Modeling
商相关性、非线性相关性和极端相关性建模
- 批准号:
0505528 - 财政年份:2005
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Quotient Correlation, Nonlinear Dependence, and Extreme Dependence Modeling
商相关性、非线性相关性和极端相关性建模
- 批准号:
0630210 - 财政年份:2005
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
SGER: Statistics of Extremes, with Applications in Financial Time Series
SGER:极值统计及其在金融时间序列中的应用
- 批准号:
0443048 - 财政年份:2004
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似海外基金
Brunel University London and PB Design and Developments Limited KTP 22_23 R5
伦敦布鲁内尔大学和 PB Design and Developments Limited KTP 22_23 R5
- 批准号:
10064693 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Knowledge Transfer Partnership
Developments of cosmic muometric buoy
宇宙测微浮标的进展
- 批准号:
23H01264 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New developments in aromatic architect: optimization of structures and spaces and created by pi-conjugated systems and functionalization
芳香建筑师的新发展:结构和空间的优化以及π共轭系统和功能化的创造
- 批准号:
23H01944 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
- 批准号:
23K03064 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
- 批准号:
23K03139 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of variational quantum algorithms based on circuit structure optimization
基于电路结构优化的变分量子算法研究进展
- 批准号:
23K03266 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New developments in quasi-Monte Carlo methods through applications of mathematical statistics
数理统计应用准蒙特卡罗方法的新发展
- 批准号:
23K03210 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of game theory played on networks with incomplete information and their applications to public policies
不完全信息网络博弈论的发展及其在公共政策中的应用
- 批准号:
23K01343 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
- 批准号:
23K12950 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists