Max-Linear Competing Factor Models and Applications

最大线性竞争因子模型和应用

基本信息

  • 批准号:
    1505367
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-15 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Throughout applications in diverse fields, analysis of extreme risks plays an important scientific and societal role. This importance is exemplified by the 2007-2008 financial crisis, during which the concurrent decline of almost every asset category gave investors few options. These kinds of events can be described by an index termed asymptotic dependence, a probability concept that has been used to depict two risk variables concurrently going wrong. On the other hand, although the extremes of high-frequency financial transaction data have a huge economic impact, the basic structure of the data has been ignored up to now. The primary goal of this research project is to find a statistical method for characterizing such extreme risks. The nonlinear competing factor model and nonlinear time series model under investigation in this project will bridge the gap between theoretical research and practice. The dissemination of new methodologies and statistical tools will lead to a better understanding of concurrent decline and extreme co-movement. In the multivariate context, it is well-known that nonlinear dependence, asymmetric dependence, and asymptotic dependence co-exist in financial time series, social network studies, climate studies, image processing, and many other application areas. A major goal of this project is to make significant methodological and theoretical contributions to modeling observations simultaneously, while embracing the different variable dependence features. The project consists of two main sub-projects. The first sub-project proposes a max-linear competing factor model that can incorporate the different variable dependence features but still possesses a simple form of factor structure. The second sub-project builds a new family of multivariate time series models (Copula Structured M4 Processes) suitable for multivariate maxima of high frequency intra-day returns. Using these models, the probability of the concurrent decline of assets in a typical stock market will be evaluated. The integration of the two sub-projects provides a comprehensive framework for understanding how variables depend on each other in high dimensional and temporal observational data.
在不同领域的应用中,极端风险分析发挥着重要的科学和社会作用。这种重要性在2007-2008年的金融危机中得到了体现,在那次危机期间,几乎每一种资产类别的同时下跌,让投资者几乎没有选择。这类事件可以用一个称为渐近相关性的指数来描述,这是一个概率概念,用来描述两个同时出错的风险变量。另一方面,尽管高频金融交易数据的极值对经济产生了巨大的影响,但数据的基本结构到目前为止一直被忽视。这项研究项目的主要目标是找到一种统计方法来表征这种极端风险。本项目正在研究的非线性竞争因素模型和非线性时间序列模型将在理论研究和实践之间架起一座桥梁。传播新的方法和统计工具将有助于更好地理解同时下降和极端共同变动。在多变量背景下,众所周知,在金融时间序列、社会网络研究、气候研究、图像处理等许多应用领域中,非线性相关性、非对称相关性和渐近相关性并存。该项目的一个主要目标是在采用不同的变量相关性特征的同时,为模拟观测做出重大的方法学和理论贡献。该项目由两个主要的子项目组成。第一个子项目提出了一个最大线性竞争因素模型,该模型可以包含不同的变量依赖特征,但仍然具有简单的因素结构形式。第二个子项目构建了一族新的多变量时间序列模型(Copula结构化M4过程),适用于高频日内收益的多变量极大值。利用这些模型,我们将评估典型股票市场中资产同时下跌的概率。这两个子项目的结合为理解高维和时态观测数据中的变量如何相互依赖提供了一个全面的框架。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhengjun Zhang其他文献

Efficient Hydrogen Evolution Reaction on Ni3S2 Nanorods with a P/N Bipolar Electrode Prepared by Dealloying Sulfurization of NiW Amorphous Alloys
NiW非晶合金脱合金硫化制备的P/N双极电极对Ni3S2纳米棒进行高效析氢反应
  • DOI:
    10.1021/acsaem.0c00690
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Jianyue Chen;Yunhan Ling;Zhaoxia Lu;Zhengjun Zhang
  • 通讯作者:
    Zhengjun Zhang
Effects of Two Pilot Injection on Combustion and Emissions in a PCCI Diesel Engine
两次引燃喷射对 PCCI 柴油机燃烧和排放的影响
  • DOI:
    10.3390/en14061651
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Deqing Mei;Qisong Yu;Zhengjun Zhang;Shan Yue;Lizhi Tu
  • 通讯作者:
    Lizhi Tu
Impact of heat on all-cause and cause-specific mortality: A multi-city study in Texas.
高温对全因和特定原因死亡率的影响:德克萨斯州的一项多城市研究。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Chunyu Guo;Kevin Lanza;Dongying Li;Yuyu Zhou;K. Aunan;B. Loo;Jason Lee;B. Luo;Xiaoli Duan;Wangjian Zhang;Zhengjun Zhang;Shao Lin;Kai Zhang
  • 通讯作者:
    Kai Zhang
An extension of max autoregressive models
最大自回归模型的扩展
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Naveau;Zhengjun Zhang;Bin Zhu
  • 通讯作者:
    Bin Zhu
Discussion of “Estimating the historical and future probabilities of large terrorist events” by Aaron Clauset and Ryan Woodard
Aaron Clauset 和 Ryan Woodard 讨论“估计大型恐怖事件的历史和未来概率”
  • DOI:
    10.1214/13-aoas614f
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiurong Cui;Karl Rohe;Zhengjun Zhang
  • 通讯作者:
    Zhengjun Zhang

Zhengjun Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhengjun Zhang', 18)}}的其他基金

Collaborative Proposal: Models and Methods for High Quantiles in Risk Quantification and Management
合作提案:风险量化和管理中高分位数的模型和方法
  • 批准号:
    2012298
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
New Developments of Nonlinear Dependent Models, with Applications in Genetics, Finance and the Environment
非线性相关模型的新发展及其在遗传学、金融和环境中的应用
  • 批准号:
    0804575
  • 财政年份:
    2008
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Quotient Correlation, Nonlinear Dependence, and Extreme Dependence Modeling
商相关性、非线性相关性和极端相关性建模
  • 批准号:
    0505528
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Quotient Correlation, Nonlinear Dependence, and Extreme Dependence Modeling
商相关性、非线性相关性和极端相关性建模
  • 批准号:
    0630210
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
SGER: Statistics of Extremes, with Applications in Financial Time Series
SGER:极值统计及其在金融时间序列中的应用
  • 批准号:
    0443048
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

CAREER: Scalable algorithms for regularized and non-linear genetic models of gene expression
职业:基因表达的正则化和非线性遗传模型的可扩展算法
  • 批准号:
    2336469
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Regulation of Linear Ubiquitin Signaling in Innate Immunity
先天免疫中线性泛素信号传导的调节
  • 批准号:
    MR/X036944/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
  • 批准号:
    2340527
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
  • 批准号:
    2338655
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
  • 批准号:
    EP/Y030249/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
  • 批准号:
    2338704
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: Construction of New Additive and Semi-Implicit General Linear Methods
RII Track-4:NSF:新的加法和半隐式一般线性方法的构造
  • 批准号:
    2327484
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
  • 批准号:
    EP/Y030990/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Linear Response and Koopman Modes: Prediction and Criticality - LINK
线性响应和库普曼模式:预测和临界性 - LINK
  • 批准号:
    EP/Y026675/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Structural Performance Analysis of a Floating Green Energy Storage Subjected to Non-Linear Loads
非线性载荷下浮动绿色储能结构性能分析
  • 批准号:
    2902122
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了