Collaborative Research: Enabling Magnetoplasticity in Polycrystalline Ni-Mn-Ga by Reducing Internal Constraints Through Porosity
合作研究:通过孔隙率减少内部约束,实现多晶 Ni-Mn-Ga 的磁塑性
基本信息
- 批准号:0804984
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-05-01 至 2012-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL: Magnetic-field-induced twinning is responsible for the high magnetoplastic strains achievable in monocrystalline Ni-Mn-Ga. By contrast, polycrystalline Ni-Mn-Ga shows no magnetoplasticity because twinning is inhibited by internal incompatibility stresses developed between adjacent grains. The PIs recently discovered that porosity, because it reduces internal stresses, allows limited twinning to occur in polycrystalline Ni-Mn-Ga foams, resulting in magnetoplastic strains. Then, designing the foam architecture and grain microstructure will allow tuning continuously the magnetoplastic strain of these foams between those of a polycrystal (~0%) and a single crystal (~10%). In this basic study, PIs will develop a fundamental understanding of how foam architecture and grain microstructure enable magnetic-field-induced strains in polycrystalline magnetic shape-memory alloys, leading to experimentally-validated models that can quantitatively predict the magnitude of magnetoplastic strain for a given foam structure. To achieve this goal, fundamental experimental and theoretical studies of the mechanisms responsible for magnetoplasticity in the individual struts of foams will be carried out. The foam architecture will be varied, in terms of node and strut volume fraction as well as strut size and aspect ratio, by using two foam manufacturing methods (casting and powder metallurgy). The foam grain size and texture will be tailored: the ratio of grain to strut diameter will be varied from much smaller than unity (polycrystalline microstructure) to comparable to unity (bamboo microstructure), and the texture will be varied from random to strong fiber texture. Finally, the magneto-mechanical properties of the resulting foams will be characterized and numerically modeled on two length scales: at a shorter length scale, models based on dislocation-dislocation and dislocation-interface interactions will be developed to predict the effect of free surfaces on the constitutive behavior of Ni-Mn-Ga in small volumes; at larger length scale, finite-element models (FEM) will be created to predict, based on the constitutive behavior, the overall foam magneto-mechanical behavior. NON-TECHNICAL: The novel magnetic shape-memory foams, produced by the PIs in preliminary research, exhibit strains and response times comparable to Terfenol D, the best commercial magnetostrictive material, and are expected to show further improvements based on these fundamental study. As compared to Terfenol D, Ni-Mn-Ga foams have lower density and contain less expensive metals, and may thus grow rapidly in industrial importance, thus having a transformative effect on various sensor and actuator technologies. Also, while the present research will focus on Ni-Mn-Ga, the mechanisms studied are general in nature, and will thus apply to all other magnetic shape-memory alloys. Beyond sensor and actuator applications, the open foam porosity may enable new applications such as (i) micropumps without moving parts where fluids are displaced by magnetically deforming pores, or (ii) efficient magnetic cooling devices with high heat-transfer rates due to the large specific areas of foams. Finally, this project will educate two graduate students and several undergraduate students, whose recruitment will emphasize women and minorities. Beside research, the students will participate in various outreach activities using the shape-memory materials to introduce materials science and technology to young women, minorities, and grade school (K-12) students. The PIs have submitted a provisional patent and intend to pursue industrial applications which is key for transitioning the field to the US high-technology industry.
技术:磁场诱导孪晶是在单晶Ni-Mn-Ga中实现高磁塑性应变的原因。相比之下,多晶Ni-Mn-Ga没有表现出磁塑性,因为相邻晶粒之间产生的内部不相容应力抑制了孪晶的形成。pi最近发现,由于孔隙度降低了内应力,因此可以在多晶Ni-Mn-Ga泡沫中产生有限的孪晶,从而导致磁塑性应变。然后,设计泡沫结构和晶粒微观结构,使这些泡沫的磁塑性应变在多晶(~0%)和单晶(~10%)之间连续调整。在这项基础研究中,pi将对泡沫结构和晶粒微观结构如何使多晶磁性形状记忆合金中的磁场诱发应变有一个基本的理解,从而导致实验验证的模型,可以定量预测给定泡沫结构的磁塑性应变的大小。为了实现这一目标,将对泡沫材料各支柱的磁塑性机制进行基础实验和理论研究。通过使用两种泡沫制造方法(铸造和粉末冶金),泡沫结构将在节点和支柱体积分数以及支柱尺寸和长径比方面有所不同。泡沫的晶粒尺寸和质地将进行定制:颗粒与支撑直径的比例将从远小于统一(多晶微观结构)到与统一(竹微观结构)相当,纹理将从随机到强纤维纹理变化。最后,所得到的泡沫的磁力学性能将在两个长度尺度上进行表征和数值模拟:在较短的长度尺度上,基于位错-位错和位错-界面相互作用的模型将被开发出来,以预测自由表面对Ni-Mn-Ga小体积本构行为的影响;在更大的长度尺度,将建立有限元模型(FEM)来预测,基于本构行为,整体泡沫的磁-力学行为。非技术:pi在初步研究中生产的新型磁性形状记忆泡沫,其应变和响应时间可与最好的商业磁致伸缩材料Terfenol D相媲美,并有望在这些基础研究的基础上进一步改进。与Terfenol D相比,Ni-Mn-Ga泡沫具有较低的密度和较少的昂贵金属,因此在工业上的重要性可能迅速增长,从而对各种传感器和执行器技术产生变革性影响。此外,虽然目前的研究将集中在Ni-Mn-Ga上,但所研究的机制本质上是通用的,因此将适用于所有其他磁性形状记忆合金。除了传感器和执行器应用之外,开放式泡沫孔隙率还可以实现新的应用,例如(i)没有运动部件的微型泵,其中流体被磁变形孔所取代,或(ii)由于泡沫的大特定区域而具有高传热率的高效磁冷却装置。最后,这个项目将培养两名研究生和几名本科生,他们的招聘将强调女性和少数民族。除了研究之外,学生们还将利用形状记忆材料参加各种外展活动,向年轻女性、少数民族和小学(K-12)学生介绍材料科学和技术。pi已经提交了一项临时专利,并打算寻求工业应用,这是将该领域过渡到美国高科技产业的关键。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Mullner其他文献
Lysenin Channel Reconstitution into Unsupported Droplet Interface Bilayers
- DOI:
10.1016/j.bpj.2017.11.1530 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Christopher A. Thomas;Devon Richtsmeier;Aaron Smith;Peter Mullner;Daniel Fologea - 通讯作者:
Daniel Fologea
Peter Mullner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Mullner', 18)}}的其他基金
NSF/DMR-BSF: Twin boundary structure and mobility in shape memory alloys
NSF/DMR-BSF:形状记忆合金的双边界结构和迁移率
- 批准号:
1710640 - 财政年份:2017
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
PFI:AIR - TT: Motionless MSM Micro-Pump
PFI:AIR - TT:静止 MSM 微型泵
- 批准号:
1500240 - 财政年份:2015
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: Size Effects on Magneto-Mechanics of Ni-Mn-Ga Fibers
合作研究:Ni-Mn-Ga 纤维磁力学的尺寸效应
- 批准号:
1207192 - 财政年份:2012
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
International Conference on Ferromagnetic Shape Memory Alloys 2013; Boise, Idaho; June 2013 for 4 - 5 days
2013年铁磁形状记忆合金国际会议;
- 批准号:
1217842 - 财政年份:2012
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Mechanics of Magnetic Shape-Memory Nanostructures
磁性形状记忆纳米结构的力学
- 批准号:
1068069 - 财政年份:2011
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Materials World Network: Deformation via the Transformation of Hierarchical Microstructures
材料世界网络:通过分层微观结构的转变实现变形
- 批准号:
1008167 - 财政年份:2010
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Multifunctional X-Ray Diffraction System for Multidisciplinary Research and Education
MRI:获取用于多学科研究和教育的多功能 X 射线衍射系统
- 批准号:
0619795 - 财政年份:2006
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
NSF-Europe Materials Collaboration: Micromechanics of Magnetic Shape-Memory Alloys
NSF-欧洲材料合作:磁性形状记忆合金的微观力学
- 批准号:
0502551 - 财政年份:2005
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332468 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
- 批准号:
2348589 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420847 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: An Integrated Framework for Enabling Temporal-Reliable Quantum Learning on NISQ-era Devices
合作研究:OAC Core:在 NISQ 时代设备上实现时间可靠的量子学习的集成框架
- 批准号:
2311950 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: GCR: Convergence on Phosphorus Sensing for Understanding Global Biogeochemistry and Enabling Pollution Management and Mitigation
合作研究:GCR:融合磷传感以了解全球生物地球化学并实现污染管理和缓解
- 批准号:
2317826 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant