Collaborative Research: Size Effects on Magneto-Mechanics of Ni-Mn-Ga Fibers

合作研究:Ni-Mn-Ga 纤维磁力学的尺寸效应

基本信息

  • 批准号:
    1207192
  • 负责人:
  • 金额:
    $ 34.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-15 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:This project lays the foundation for a new class of active materials - magnetic shape-memory fibers with tailored geometry, microstructure and magneto-mechanical properties - to be used as transducers for micro-devices and as building blocks for composites or cellular structures. Magnetic-field-induced twinning is responsible for the high magnetoplastic strains achievable in monocrystalline Ni-Mn-Ga. By contrast, polycrystalline Ni-Mn-Ga shows no magnetoplasticity because twinning is inhibited by internal incompatibility stresses developed between adjacent, misoriented grains. The PIs recently discovered that porosity, because it reduces internal stresses, allows twinning to occur in polycrystalline Ni-Mn-Ga foams, resulting in magnetoplastic strains in the foam struts. Applying this concept to individual fibers, our hypothesis is that tailored grain size (with respect to fiber size) and grain orientations will allow tuning the magnetoplastic strain from polycrystalline (0%) to monocrystalline (~10%) behavior.In this basic study, we will develop a fundamental understanding of how fiber geometry and grain microstructure enable magnetic-field-induced strains in polycrystalline Ni-Mn-Ga fibers, leading to experimentally-validated models that can quantitatively predict the magnitude of magnetoplastic strain for a given fiber structure. Fundamental experimental and theoretical studies probing the mechanisms responsible for magnetoplasticity in the fibers will be carried out. First, the fiber geometry will be varied, in terms of cross-sectional shape and diameter, by using two versatile manufacturing methods (Taylor wire drawing and melt extraction). Then, the fiber grain size and texture will be tailored: the ratio of grain to fiber diameter will be varied from 1 (polycrystalline fiber) to ~1 (bamboo structure) and compared to single-crystal fibers; grain orientation will be varied from random to fiber texture. Third, the magneto-mechanical properties of the fibers will be characterized and numerically modeled on two length scales: (i) at a shorter length scale, models based on the mutual interaction of twinning dislocations and dislocation-interface interactions will predict the effect of free surfaces on the constitutive behavior of Ni-Mn-Ga in small volumes; (ii) at larger length scale, finite-element models will predict, based on the constitutive behavior, the magneto-mechanical behavior of an assembly of bamboo grains within a fiber. Collaborators will embed fibers in polymer matrix to create composites to study their magneto-mechanical properties, or create fiber bundles to study their magneto-caloric properties.NON-TECHNICAL SUMMARY:The present project is a coupled experimental-theoretical study of the magneto-mechanics of magnetic shape-memory fibers, a novel class of materials. It focuses on identifying, quantifying and predicting the effects of fiber geometry and grain microstructure upon reduction of internal stresses and the resulting enhancement in magnetoplastic strain, a phenomenon recently demonstrated in struts of foams by the PIs. The results obtained will be general in nature and thus applicable not only to Ni-Mn-Ga but also to the whole class of magnetic shape-memory alloys.Ni-Mn-Ga fibers with tailored grain structures are expected to show large magnetoplastic strain (i.e. they deform when exposed to a variable magnetic field) which are much higher than magnetostrictive material containing strategic rare-earth elements. These Ni-Mn-Ga fibers may be implemented without further processing in smart actuators and may thus grow rapidly in industrial importance, resulting in a transformative effect on various sensor and actuator technologies including bio-medical pumps, ink-jet printer valves, power-generation transducers, and haptics devices. Beyond sensor and actuator applications, fibers and fiber constructs may enable new applications such as efficient magnetic cooling devices with high heat-transfer rates due to their large specific areas. This project will educate two graduate students and several undergraduate students, whose recruitment will emphasize women and minorities. Beside research, the students will participate in various outreach activities using the shape-memory materials to introduce materials science and technology to young women, minorities, and grade school (K-12) students. This project will leverage collaboration with four international partners (in Europe and Asia) thereby generating high visibility and impact. The recent results of the PIs resonated strongly with the scientific community and were highlighted in national media. These contacts will be leveraged for disseminating results of the proposed project. The PIs have submitted two patents and pursue a spin-off project for transitioning the field to the US high-technology industry.
技术概述:该项目为新型活性材料奠定了基础-具有定制几何形状,微观结构和磁机械性能的磁性形状记忆纤维-用作微型设备的换能器以及复合材料或蜂窝结构的构建块。磁场诱导的孪生是负责高磁塑性应变实现单晶Ni-Mn-Ga。相比之下,多晶Ni-Mn-Ga没有表现出磁塑性,因为孪晶被相邻的、取向错误的晶粒之间的内部不相容应力所抑制。PI最近发现,多孔性,因为它减少了内部应力,允许在多晶Ni-Mn-Ga泡沫中发生孪生,导致泡沫支柱中的磁塑性应变。将这一概念应用于单个纤维,我们的假设是,(相对于纤维尺寸)和晶粒取向将允许将磁塑性应变从多晶(0%)调节到单晶(~10%)行为。在这项基础研究中,我们将对纤维几何形状和晶粒微结构如何在多晶Ni-Mn-Ga纤维中实现磁场诱导应变,从而得到实验验证的模型,该模型可以定量地预测给定纤维结构的磁塑性应变的大小。 将进行基本的实验和理论研究,探索纤维中磁塑性的机制。 首先,通过使用两种通用的制造方法(泰勒拉丝和熔体萃取),纤维的几何形状将在横截面形状和直径方面变化。 然后,将定制纤维的晶粒尺寸和纹理:晶粒与纤维直径的比率将从1(多晶纤维)变化到~1(竹结构),并与单晶纤维进行比较;晶粒取向将从随机变化到纤维纹理。第三,将在两个长度尺度上表征和数值模拟纤维的磁机械性能:(i)在较短的长度尺度上,基于孪晶位错和位错-界面相互作用的相互作用的模型将预测自由表面对小体积Ni-Mn-Ga本构行为的影响;(ii)在更大的长度尺度下,有限元模型将基于本构行为预测纤维内竹颗粒的组装的磁机械行为。 合作者将在聚合物基体中嵌入纤维以创建复合材料来研究其磁机械性能,或者创建纤维束来研究其磁热性能。非技术摘要:本项目是磁性形状记忆纤维的磁力学的耦合实验-理论研究,这是一类新型材料。 它的重点是识别,量化和预测的影响,纤维的几何形状和晶粒微观结构后,减少内部应力和磁塑性应变,最近表现出的泡沫支柱的PI的现象,由此产生的增强。所得结果具有普遍性,不仅适用于Ni-Mn-Ga系磁性形状记忆合金,而且适用于所有类型的磁性形状记忆合金,具有定制晶粒结构的Ni-Mn-Ga纤维可望表现出大的磁塑性应变(即当暴露于可变磁场时它们变形),这比含有战略稀土元素的磁致伸缩材料高得多。 这些Ni-Mn-Ga纤维可以在没有进一步处理的情况下在智能致动器中实现,并且因此可以在工业重要性上快速增长,从而对包括生物医学泵、喷墨打印机阀、发电换能器和触觉设备在内的各种传感器和致动器技术产生变革性影响。除了传感器和致动器应用之外,光纤和光纤结构还可以实现新的应用,例如由于其大的比面积而具有高传热率的高效磁冷却装置。 该项目将培养两名研究生和几名本科生,他们的招收将侧重于妇女和少数民族。除了研究,学生将参加各种推广活动,使用形状记忆材料,介绍材料科学和技术,以年轻妇女,少数民族和小学(K-12)的学生。该项目将利用与四个国际合作伙伴(欧洲和亚洲)的合作,从而产生高知名度和影响力。研究所最近的研究结果在科学界引起了强烈共鸣,并在国家媒体上得到了突出报道。将利用这些联系人传播拟议项目的成果。PI已经提交了两项专利,并寻求将该领域转移到美国高科技行业的分拆项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Mullner其他文献

Lysenin Channel Reconstitution into Unsupported Droplet Interface Bilayers
  • DOI:
    10.1016/j.bpj.2017.11.1530
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Christopher A. Thomas;Devon Richtsmeier;Aaron Smith;Peter Mullner;Daniel Fologea
  • 通讯作者:
    Daniel Fologea

Peter Mullner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Mullner', 18)}}的其他基金

NSF/DMR-BSF: Twin boundary structure and mobility in shape memory alloys
NSF/DMR-BSF:形状记忆合金的双边界结构和迁移率
  • 批准号:
    1710640
  • 财政年份:
    2017
  • 资助金额:
    $ 34.63万
  • 项目类别:
    Continuing Grant
PFI:AIR - TT: Motionless MSM Micro-Pump
PFI:AIR - TT:静止 MSM 微型泵
  • 批准号:
    1500240
  • 财政年份:
    2015
  • 资助金额:
    $ 34.63万
  • 项目类别:
    Standard Grant
International Conference on Ferromagnetic Shape Memory Alloys 2013; Boise, Idaho; June 2013 for 4 - 5 days
2013年铁磁形状记忆合金国际会议;
  • 批准号:
    1217842
  • 财政年份:
    2012
  • 资助金额:
    $ 34.63万
  • 项目类别:
    Standard Grant
Mechanics of Magnetic Shape-Memory Nanostructures
磁性形状记忆纳米结构的力学
  • 批准号:
    1068069
  • 财政年份:
    2011
  • 资助金额:
    $ 34.63万
  • 项目类别:
    Standard Grant
Materials World Network: Deformation via the Transformation of Hierarchical Microstructures
材料世界网络:通过分层微观结构的转变实现变形
  • 批准号:
    1008167
  • 财政年份:
    2010
  • 资助金额:
    $ 34.63万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Magnetoplasticity in Polycrystalline Ni-Mn-Ga by Reducing Internal Constraints Through Porosity
合作研究:通过孔隙率减少内部约束,实现多晶 Ni-Mn-Ga 的磁塑性
  • 批准号:
    0804984
  • 财政年份:
    2008
  • 资助金额:
    $ 34.63万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Multifunctional X-Ray Diffraction System for Multidisciplinary Research and Education
MRI:获取用于多学科研究和教育的多功能 X 射线衍射系统
  • 批准号:
    0619795
  • 财政年份:
    2006
  • 资助金额:
    $ 34.63万
  • 项目类别:
    Standard Grant
NSF-Europe Materials Collaboration: Micromechanics of Magnetic Shape-Memory Alloys
NSF-欧洲材料合作:磁性形状记忆合金的微观力学
  • 批准号:
    0502551
  • 财政年份:
    2005
  • 资助金额:
    $ 34.63万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Investigating the relationship between size and the balance between carbon acquisition modes in mixotrophic protists
合作研究:研究混合营养原生生物体大小与碳获取模式平衡之间的关系
  • 批准号:
    2230102
  • 财政年份:
    2023
  • 资助金额:
    $ 34.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating the relationship between size and the balance between carbon acquisition modes in mixotrophic protists
合作研究:研究混合营养原生生物体大小与碳获取模式平衡之间的关系
  • 批准号:
    2230103
  • 财政年份:
    2023
  • 资助金额:
    $ 34.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Regulation of Nuclear Size
合作研究:核尺寸的调节
  • 批准号:
    2213582
  • 财政年份:
    2022
  • 资助金额:
    $ 34.63万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Minimum Quantum Circuit Size Problems, Variants, and Applications
合作研究:FET:小型:最小量子电路尺寸问题、变体和应用
  • 批准号:
    2243659
  • 财政年份:
    2022
  • 资助金额:
    $ 34.63万
  • 项目类别:
    Standard Grant
Collaborative Research: On the Intensity and Size Relationship of Tropical Cyclones
合作研究:热带气旋的强度和大小关系
  • 批准号:
    2202766
  • 财政年份:
    2022
  • 资助金额:
    $ 34.63万
  • 项目类别:
    Continuing Grant
Collaborative Research: Regulation of Nuclear Size
合作研究:核尺寸的调节
  • 批准号:
    2213584
  • 财政年份:
    2022
  • 资助金额:
    $ 34.63万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Minimum Quantum Circuit Size Problems, Variants, and Applications
合作研究:FET:小型:最小量子电路尺寸问题、变体和应用
  • 批准号:
    2224131
  • 财政年份:
    2022
  • 资助金额:
    $ 34.63万
  • 项目类别:
    Standard Grant
Collaborative Research RUI: Examination of the Effect of Templating Agents on the Size, Shape and Chiral Recognition of Bifurcated Amino Acid Based Amphiphilic Molecular Assemblies
合作研究 RUI:检查模板剂对基于分叉氨基酸的两亲性分子组装体的尺寸、形状和手性识别的影响
  • 批准号:
    2203652
  • 财政年份:
    2022
  • 资助金额:
    $ 34.63万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Minimum Quantum Circuit Size Problems, Variants, and Applications
合作研究:FET:小型:最小量子电路尺寸问题、变体和应用
  • 批准号:
    2224132
  • 财政年份:
    2022
  • 资助金额:
    $ 34.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Regulation of Nuclear Size
合作研究:核尺寸的调节
  • 批准号:
    2213583
  • 财政年份:
    2022
  • 资助金额:
    $ 34.63万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了