Affine Manifolds, Log Geometry, and Mirror Symmetry

仿射流形、对数几何和镜像对称

基本信息

  • 批准号:
    0805328
  • 负责人:
  • 金额:
    $ 31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

M. Gross plans to study the geometry of mirror symmetry for Calabi-Yau manifolds. This will be done from the perspective of an algebro-geometric version of the Strominger-Yau-Zaslow conjecture introduced by M. Gross and B. Siebert. Associated to certain sorts of large complex structure limit degenerations of Calabi-Yau manifolds one can define an intersection complex, which is an affine manifold with singularities. Conversely, given an affine manifold with singularities, Gross and Siebert showed it is possible to build explicitly such a degeneration in terms of "tropical" data on the affine manifold with singularities. M. Gross plans to study applications of this construction, and in particular intends to work towards the goal of showing that this construction provides a geometric explanation for mirror symmetry. Ultimately, it will be shown that the same tropical structures determine both numbers of rational curves and period calculations on the two different sides of mirror symmetry.The work proposed by M. Gross lies at the intersection of string theory and geometry. String theory replaces the traditional notion of the point particle with a small loop of string, moving through space-time.To make string theory compatible with quantum mechanics, space-time must be ten-dimensional. Since space-time appears four-dimensional, one expects six of these dimensions to be a very small "curled up" geometric object. These geometric objects are called Calabi-Yau manifolds. In the early 1990s, string theorists proposed a remarkable association between completely different Calabi-Yau manifolds: certain calculations extremely difficult to perform on one Calabi-Yau manifold could be completed by performing completely different, and much easier, calculations on a different Calabi-Yau manifold. This discovery was known as mirror symmetry.Since this time, many geometers have been trying to understand the mathematics behind this miraculous observation. The work of M. Gross hopes to give mathematical insight and explanation for the phenomenon of mirror symmetry.
M.格罗斯计划研究卡拉比-丘流形的镜像对称几何。这将从M.格罗斯和B。西伯特与Calabi-Yau流形的某些大复结构极限退化相联系,可以定义一个交复形,它是一个具有奇点的仿射流形。相反,给定一个具有奇异性的仿射流形,格罗斯和西伯特证明了可以在具有奇异性的仿射流形上明确地建立这样的退化。M.格罗斯计划研究这一结构的应用,特别是打算努力实现这一目标,即证明这一结构为镜像对称提供了几何解释。最后,我们将证明,相同的热带结构决定了镜像对称的两个不同侧面上的有理曲线的数目和周期的计算。格罗斯处于弦理论和几何学的交叉点。弦理论用一个在时空中运动的弦环取代了传统的点粒子概念,为了使弦理论与量子力学兼容,时空必须是10维的。既然时空看起来是四维的,那么我们可以预期其中的六个维度是一个非常小的“卷曲”的几何对象。这些几何对象被称为卡-丘流形。在20世纪90年代早期,弦理论家提出了完全不同的卡-丘流形之间的一种显著联系:某些在一个卡-丘流形上极难执行的计算,可以通过在另一个卡-丘流形上执行完全不同的、容易得多的计算来完成。这一发现被称为镜像对称。从那时起,许多几何学家一直试图理解这一奇迹般的观察背后的数学原理。M的工作。格罗斯希望能对镜像对称现象给出数学上的解释。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Gross其他文献

Toric degenerations and Batyrev-Borisov duality
  • DOI:
    10.1007/s00208-005-0686-7
  • 发表时间:
    2005-10-05
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Mark Gross
  • 通讯作者:
    Mark Gross
On smooth surfaces in Gr(1,p 3) with a fundamental curve
  • DOI:
    10.1007/bf02568346
  • 发表时间:
    1993-12-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Enrique Arrondo;Mark Gross
  • 通讯作者:
    Mark Gross
Mirror symmetry via 3-tori for a class of Calabi-Yau threefolds
通过 3 托里实现一类 Calabi-Yau 三重体的镜像对称
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mark Gross;P.M.H. Wilson
  • 通讯作者:
    P.M.H. Wilson
Surfaces of bidegree (3,n) in Gr(1, P3)
  • DOI:
    10.1007/bf02571642
  • 发表时间:
    1993-01-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Mark Gross
  • 通讯作者:
    Mark Gross
Gromov-Hausdorff collapsing of Calabi-Yau manifolds
Calabi-Yau 流形的 Gromov-Hausdorff 塌缩

Mark Gross的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Gross', 18)}}的其他基金

Thematic Program on Calabi-Yau Varieties: Arithmetic, Geometry, and Physics
卡拉比-丘品种专题项目:算术、几何和物理
  • 批准号:
    1247441
  • 财政年份:
    2013
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
I-Corps: Sketch It Make It
I-Corps:素描它,它使它
  • 批准号:
    1245102
  • 财政年份:
    2012
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Gromov-Witten invariants and mirror symmetry
Gromov-Witten 不变量和镜像对称
  • 批准号:
    1105871
  • 财政年份:
    2011
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Workshop: Graduate Student Consortium at Tangible Embedded Interaction 2010
研讨会:2010 年有形嵌入式交互研究生联盟
  • 批准号:
    1003935
  • 财政年份:
    2010
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Mirror Symmetry & Tropical Geometry
FRG:合作研究:镜像对称
  • 批准号:
    0854987
  • 财政年份:
    2009
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Affine Manifolds and Mirror Symmetry
仿射流形和镜像对称
  • 批准号:
    0505325
  • 财政年份:
    2005
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Calabi-Yau manifolds and mirror symmetry
卡拉比-丘流形和镜像对称
  • 批准号:
    0204326
  • 财政年份:
    2002
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
The Back of an Envelope: An Architecture for Knowledge Based Design Environment
信封背面:基于知识的设计环境架构
  • 批准号:
    0096138
  • 财政年份:
    1999
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
RUI: Equilibrium Structure and Structure Formation in Magnetorheological Fluids
RUI:磁流变液中的平衡结构和结构形成
  • 批准号:
    9803618
  • 财政年份:
    1998
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
The Back of an Envelope: An Architecture for Knowledge Based Design Environment
信封背面:基于知识的设计环境架构
  • 批准号:
    9619856
  • 财政年份:
    1997
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant

相似海外基金

Conference: St. Louis Topology Conference: Flows and Foliations in 3-Manifolds
会议:圣路易斯拓扑会议:3 流形中的流动和叶理
  • 批准号:
    2350309
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Geodesic arcs and surfaces for hyperbolic knots and 3-manifolds
双曲结和 3 流形的测地线弧和曲面
  • 批准号:
    DP240102350
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Discovery Projects
Diffusions and jump processes on groups and manifolds
群和流形上的扩散和跳跃过程
  • 批准号:
    2343868
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
CAREER: Nonlinear Finite Element Manifolds for Improved Simulation of Shock-Dominated Turbulent Flows
职业:用于改进冲击主导的湍流模拟的非线性有限元流形
  • 批准号:
    2338843
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Surfaces in 4-manifolds and modified surgery theory
4 流形表面和改进的手术理论
  • 批准号:
    2347230
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Non-semisimple quantum invariants of three and four manifolds
三流形和四流形的非半简单量子不变量
  • 批准号:
    2304990
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Equivariant index theory of infinite-dimensional manifolds and related topics
无限维流形等变指数理论及相关主题
  • 批准号:
    23K12970
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ergodic Properties of Smooth Systems on Manifolds
流形上光滑系统的遍历性质
  • 批准号:
    2247572
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
  • 批准号:
    2304841
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Symplectic cohomology and quantum cohomology of Fano manifolds
Fano流形的辛上同调和量子上同调
  • 批准号:
    2306204
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了