Affine Manifolds and Mirror Symmetry
仿射流形和镜像对称
基本信息
- 批准号:0505325
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
M. Gross plans to study the geometry of mirror symmetry for Calabi-Yaumanifolds. This will be done from the perspective of an algebro-geometricversion of the Strominger-Yau-Zaslow conjecture introduced by M. Grossand B. Siebert. Associated to certain sorts of large complex structure limitdegenerations of Calabi-Yau manifolds one can define a dual intersectioncomplex, which is an affine manifold with singularities. Conversely,given an affine manifold with singularities, it is possible to buildthe degenerate fibre of such a degeneration, along with the structureof a log scheme. Gross first plans to completethe correspondence between affine manifolds with singularitiesand large complex structure limit degenerations of Calabi-Yau varietiesby showing that these log schemes can be smoothed. Furthermore, Grossplans to compute invariants of these smoothings in terms of structureson the affine manifolds. One expects Hodge numbers, and more importantly,variations of Hodge structure, can be calculated directly from computationson the affine manifold. The ultimate goal will be to compare these results with calculations of Gromov-Witten invariants for the mirror, therebyeventually providing an explanation for mirror symmetry.The work proposed by M. Gross lies at the intersection of string theoryand geometry. String theory replaces the traditional notion of the point particle with a small loop of string, moving through space-time.To make string theory compatible with quantum mechanics, space-time mustbe ten-dimensional. Since space-time appears four-dimensional, one expects six of these dimensions to be a very small `curled up' geometric object. These geometric objects are called Calabi-Yau manifolds. In the early1990s, string theorists proposed a remarkable association betweencompletely different Calabi-Yau manifolds: certain calculations extremelydifficult to perform on one Calabi-Yau manifold could be completedby performing completely different, and much easier, calculations ona different Calabi-Yau manifold. This discovery was known as mirror symmetry.Since this time, many geometers have been trying to understand the mathematics behind this miraculous observation. The work of M. Grosshopes to give mathematical insight and explanation for the phenomenonof mirror symmetry.
M.格罗斯计划研究卡拉比-尧曼尼褶皱的镜像对称几何。这将从M.格罗斯桑德B。西伯特与Calabi-Yau流形的某些大的复结构极限退化相联系,我们可以定义一个对偶交复形,它是一个具有奇点的仿射流形。反之,给定一个具有奇点的仿射流形,则可以沿着log格式的结构构造这种退化的退化纤维。格罗斯首先计划通过证明这些对数方案可以被平滑来完成具有奇异性的仿射流形和卡-丘变量的大的复杂结构极限退化之间的对应。此外,Grossplans计算这些smoothings的不变量的仿射流形上的结构。人们期望霍奇数,更重要的是,霍奇结构的变化,可以直接从仿射流形上的计算计算。最终的目标是将这些结果与Gromov-Witten不变量的计算结果进行比较,从而最终解释镜像对称性。格罗斯处在弦理论和几何学的交叉点上。弦理论用一个在时空中运动的小弦环取代了传统的点粒子概念,为了使弦理论与量子力学兼容,时空必须是10维的。既然时空看起来是四维的,那么我们可以预期其中的六个维度是一个非常小的“卷曲”的几何对象。这些几何对象被称为卡-丘流形。在20世纪90年代早期,弦理论家提出了完全不同的卡-丘流形之间的一种显著联系:某些在一个卡-丘流形上极难执行的计算可以通过在不同的卡-丘流形上执行完全不同的、容易得多的计算来完成。这一发现被称为镜像对称。从那时起,许多几何学家一直试图理解这一奇迹般的观察背后的数学原理。M的工作。格罗斯肖普斯对镜像对称现象给出了数学上的见解和解释。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Gross其他文献
Toric degenerations and Batyrev-Borisov duality
- DOI:
10.1007/s00208-005-0686-7 - 发表时间:
2005-10-05 - 期刊:
- 影响因子:1.400
- 作者:
Mark Gross - 通讯作者:
Mark Gross
On smooth surfaces in Gr(1,p 3) with a fundamental curve
- DOI:
10.1007/bf02568346 - 发表时间:
1993-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Enrique Arrondo;Mark Gross - 通讯作者:
Mark Gross
Mirror symmetry via 3-tori for a class of Calabi-Yau threefolds
通过 3 托里实现一类 Calabi-Yau 三重体的镜像对称
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
Mark Gross;P.M.H. Wilson - 通讯作者:
P.M.H. Wilson
Surfaces of bidegree (3,n) in Gr(1, P3)
- DOI:
10.1007/bf02571642 - 发表时间:
1993-01-01 - 期刊:
- 影响因子:1.000
- 作者:
Mark Gross - 通讯作者:
Mark Gross
Gromov-Hausdorff collapsing of Calabi-Yau manifolds
Calabi-Yau 流形的 Gromov-Hausdorff 塌缩
- DOI:
10.4310/cag.2016.v24.n1.a4 - 发表时间:
2013-04 - 期刊:
- 影响因子:0
- 作者:
Mark Gross;Valentino Tosatti;张宇光 - 通讯作者:
张宇光
Mark Gross的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Gross', 18)}}的其他基金
Thematic Program on Calabi-Yau Varieties: Arithmetic, Geometry, and Physics
卡拉比-丘品种专题项目:算术、几何和物理
- 批准号:
1247441 - 财政年份:2013
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Gromov-Witten invariants and mirror symmetry
Gromov-Witten 不变量和镜像对称
- 批准号:
1105871 - 财政年份:2011
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Workshop: Graduate Student Consortium at Tangible Embedded Interaction 2010
研讨会:2010 年有形嵌入式交互研究生联盟
- 批准号:
1003935 - 财政年份:2010
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Mirror Symmetry & Tropical Geometry
FRG:合作研究:镜像对称
- 批准号:
0854987 - 财政年份:2009
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Affine Manifolds, Log Geometry, and Mirror Symmetry
仿射流形、对数几何和镜像对称
- 批准号:
0805328 - 财政年份:2008
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Calabi-Yau manifolds and mirror symmetry
卡拉比-丘流形和镜像对称
- 批准号:
0204326 - 财政年份:2002
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
The Back of an Envelope: An Architecture for Knowledge Based Design Environment
信封背面:基于知识的设计环境架构
- 批准号:
0096138 - 财政年份:1999
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
RUI: Equilibrium Structure and Structure Formation in Magnetorheological Fluids
RUI:磁流变液中的平衡结构和结构形成
- 批准号:
9803618 - 财政年份:1998
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
The Back of an Envelope: An Architecture for Knowledge Based Design Environment
信封背面:基于知识的设计环境架构
- 批准号:
9619856 - 财政年份:1997
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
相似海外基金
Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
- 批准号:
RGPIN-2019-04000 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual
Representation Theory, Calabi-Yau Manifolds, and Mirror Symmetry
表示论、卡拉比-丘流形和镜像对称
- 批准号:
2227199 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
- 批准号:
RGPIN-2019-04000 - 财政年份:2021
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual
Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
- 批准号:
RGPIN-2019-04000 - 财政年份:2020
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual
Calabi-Yau Manifolds and Mirror Symmetry
卡拉比-丘流形和镜像对称
- 批准号:
RGPIN-2019-04000 - 财政年份:2019
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual
Calculation of Gross-Siebert mirror rings for log Calabi-Yau manifolds.
对数 Calabi-Yau 流形的 Gross-Siebert 镜环的计算。
- 批准号:
2279765 - 财政年份:2019
- 资助金额:
$ 12.5万 - 项目类别:
Studentship
Mirror symmetry of Calabi-Yau and Fano manifolds form the viewpoint of moduli theory
Calabi-Yau 和 Fano 流形的镜像对称性形成了模理论的观点
- 批准号:
17K17817 - 财政年份:2017
- 资助金额:
$ 12.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Degenerations of Calabi-Yau manifolds and mirror symmetry
Calabi-Yau 流形的简并和镜像对称性
- 批准号:
16K05105 - 财政年份:2016
- 资助金额:
$ 12.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affine Manifolds, Log Geometry, and Mirror Symmetry
仿射流形、对数几何和镜像对称
- 批准号:
0805328 - 财政年份:2008
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Geometry related to mirror symmetry and degenerations of manifolds
与镜像对称和流形简并相关的几何
- 批准号:
19740034 - 财政年份:2007
- 资助金额:
$ 12.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)