The Mathematics of Stochastic Systems with Many Interacting Constituents

具有许多相互作用成分的随机系统的数学

基本信息

  • 批准号:
    0805486
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

In general terms this proposal concerns the behavior of systems with many degrees of freedom. Here one looks for (a) collective behavior of the system as a whole or (b) a statistical description of the behavior that an individual component might exhibit. It is emphasized that (a) and (b) are not disjoint criteria: indeed quite often (but not always) they coincide. The setups that will be used to promote these studies are of four types; all, to a greater or lesser extent, are interrelated and all four have their origins in the description of physical problems. These are (i) [Classical Spin--Systems] Lattice models of spins or particles interacting under certain rules, primarily local, which are known as the laws of classical equilibrium statistical mechanics. (ii) [Quantum Spin--Systems] A similar setup as in (i) but under the rules of quantum equilibrium statistical mechanics. (iii) [Interacting Particle Systems] Models where individual particles or spins occupying lattice positions update their position or state dynamically in time according to stochastic rules that are themselves effected by the existing local configuration. (iv) [Cluster Models/Graphical Representations] Graphical models where, in addition to local rules, configurations are determined, stochastically, according to global considerations or non-local rules. In addition to the standard lattice based large-scale descriptions, some of the work will concern continuum models --as well as continuum limits of lattice models.A philosophy which became prevalent beginning in the late 1960's is that of universality: Once the basic nature and premise of the constituents and their interactions are determined, the resultant (possible modes of) large?scale, long?time collective behaviors in systems with many degrees of freedom do not depend on the meticulous details of the model. Thus a variety of systems will be investigated where the nature of the interacting constituents is of the simplest type. However, it is anticipated that the full tapestry of collective behavior will be exhibited. Thus, notwithstanding the physical origins of these types of models, it is anticipated, at least by the PI, that these types of models allow for a broad range of applications--even beyond the physical sciences. (Already some of this has come to fruition in the context of a related proposal which concerns the study of criminal behavior and allocation of police resources.) Moreover and perhaps more pertinently: This proposal and its predecessor encompass a broad array of problems with multiple facets providing research opportunities at every level and the successful completion of the program will require the assistance of many collaborators ranging from the undergraduate to the senior research collaborator.
一般来说,这个建议涉及的行为的系统与许多自由度。 在这里,我们寻找的是(a)系统作为一个整体的集体行为,或者(B)单个组件可能表现出的行为的统计描述。 需要强调的是,(a)和(B)并不是互不相关的标准:实际上,它们经常(但并不总是)重合。将用于促进这些研究的设置有四种类型;所有这些类型或多或少都是相互关联的,并且所有四种类型都起源于对物理问题的描述。 这些是(i)[经典自旋系统]自旋或粒子在某些规则下相互作用的晶格模型,主要是局部的,这些规则被称为经典平衡统计力学定律。 (ii)[量子自旋-系统]类似的设置(i),但根据量子平衡统计力学的规则。 (iii)[交互粒子系统]占据晶格位置的单个粒子或自旋根据自身受现有局部配置影响的随机规则及时动态更新其位置或状态的模型。 (iv)[集群模型/图形表示]图形模型,其中除了局部规则之外,还根据全局考虑或非局部规则随机确定配置。 除了标准的晶格为基础的大规模的描述,一些工作将涉及连续模型-以及连续的限制晶格models.A哲学,成为流行的开始在20世纪60年代后期是普遍性:一旦基本性质和前提的成分和它们的相互作用是确定的,所产生的(可能的模式)大?规模,长?具有多个自由度的系统中的时间集体行为不依赖于模型的细致细节。 因此,将研究各种系统,其中相互作用组分的性质是最简单的类型。 然而,预计集体行为的全部挂毯将被展示。因此,尽管这些类型的模型的物理起源,但至少PI预计,这些类型的模型允许广泛的应用-甚至超越物理科学。 (其中一些已经在一项有关研究犯罪行为和警察资源分配的建议中取得了成果。)此外,也许更有针对性:该提案及其前身涵盖了一系列广泛的问题,这些问题具有多个方面,在各个层面提供研究机会,并且该计划的成功完成将需要从本科生到高级研究合作者的许多合作者的协助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lincoln Chayes其他文献

Critical Region for Droplet Formation in the Two-Dimensional Ising Model
  • DOI:
    10.1007/s00220-003-0946-x
  • 发表时间:
    2003-10-07
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Marek Biskup;Lincoln Chayes;Roman Kotecký
  • 通讯作者:
    Roman Kotecký
Physica a on the Thinning of Films (i)
物理学a论薄膜的减薄(i)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lincoln Chayes;Joseph Rudnick;Aviva Shackell;R. Zandi
  • 通讯作者:
    R. Zandi
Thinning of superfluid films below the critical point.
超流膜在临界点以下变薄。
Thinning of superfluid films: critical effects immediately below the $lambda$ point
超流膜变薄:紧邻 $lambda$ 点下方的临界效应
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aviva Shackell;R. Zandi;J. Rudnick;M. Kardar;Lincoln Chayes
  • 通讯作者:
    Lincoln Chayes

Lincoln Chayes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lincoln Chayes', 18)}}的其他基金

Behaviors of Systems with Many Interacting Components
具有许多交互组件的系统的行为
  • 批准号:
    1205295
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Topics in Statistical Mechanics and Related Graphical Models
统计力学和相关图形模型主题
  • 批准号:
    0306167
  • 财政年份:
    2003
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Interacting Graphical Models and Related Topics in Statistical Mechanics
统计力学中的交互图形模型和相关主题
  • 批准号:
    9971016
  • 财政年份:
    1999
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Mathematics and Physics of the Condensed State
数学科学:凝聚态的数学和物理
  • 批准号:
    9302023
  • 财政年份:
    1993
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Mathematics and Physics of Disordered Materials
数学科学:无序材料的数学和物理
  • 批准号:
    9009049
  • 财政年份:
    1990
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
  • 批准号:
    8414088
  • 财政年份:
    1984
  • 资助金额:
    $ 27万
  • 项目类别:
    Fellowship Award

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
  • 批准号:
    EP/Y033248/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
  • 批准号:
    2420029
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
  • 批准号:
    24K06843
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
  • 批准号:
    2338555
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Long time dynamics and genealogies of stochastic reaction-diffusion systems
随机反应扩散系统的长时间动力学和系谱
  • 批准号:
    2348164
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
CAREER: Identifying emergent dynamics in stochastic systems
职业:识别随机系统中的新兴动态
  • 批准号:
    2238667
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Rare Events and High-Dimensional Stochastic Systems
稀有事件和高维随机系统
  • 批准号:
    2246838
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
CAREER: Stochastic Spatial Systems
职业:随机空间系统
  • 批准号:
    2238272
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
  • 批准号:
    2345533
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
NSF-BSF: Real-Time Robust Estimation and Stochastic Control for Dynamic Systems with Additive Heavy-Tailed Uncertainties
NSF-BSF:具有加性重尾不确定性的动态系统的实时鲁棒估计和随机控制
  • 批准号:
    2317583
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了