Inference for dynamical systems

动力系统的推理

基本信息

项目摘要

The starting point of the proposed research is a new algorithm that has recently been shown to make maximum likelihood estimation feasible for previously intractable partially-observed nonlinear stochastic dynamical systems. The algorithm is based on a sequence of filtering operations which converges to a maximum likelihood parameter estimate, and is therefore termed iterated filtering. The availability of iterated filtering methodology opens up many possibilities for developing new classes of stochastic dynamic models for use as data analysis tools. One component of the proposed research program is development of a new class of Markov chain models appropriate for biological systems, consisting of interacting Poisson processes whose rates are subject to white noise. Another goal is to broaden the class of dynamical systems for which likelihood based inference is practical, via increased theoretical understanding of iterated filtering. Specifically, a new theoretical framework for iterated filtering will be developed, based on identifying a relationship with previously studied stochastic approximation techniques. Techniques of averaging over iterations and searching over a sequence of random directions, which have good theoretical and practical properties for other stochastic approximation methods, are expected to be applicable to iterated filtering. The third component of the proposed research is to demonstrate the role of the new methodology in facilitating a novel and scientifically relevant data analysis of malaria transmission. Infectious diseases pose challenging and important questions which have long been a testing ground for inference methodology for dynamical systems. Carrying out data analysis via new classes of continuous time dynamic models will require handling novel situations for diagnosing goodness of fit, and appropriate techniques will be developed and demonstrated.Nonlinear stochastic dynamical models are widely used to study systems occurring throughout the sciences and engineering. Such models are natural to formulate and can be analyzed mathematically and numerically. Despite decades of work, carrying out statistical inference for nonlinear dynamical models remains a challenging and important problem. Recently, progress has been made possible by new methodology taking advantage of increasing computational resources. Continued progress requires building theoretical understanding of successfully demonstrated methodology, developing new methodologies, and showing how these advances can be used to further scientific knowledge about dynamical systems of interest. Recent motivations for understanding infectious disease dynamics include the threats posed by emerging diseases (HIV/AIDS, SARS, pandemic influenza), re-emerging diseases (malaria, tuberculosis) and bioterrorism. Inference for dynamical systems arises in many diverse fields, including economics, neuroscience, chemical engineering, signal processing, and molecular biochemistry. The field of Statistics forms a natural bridge to make methodological advances available to a wider research community.
所提出的研究的起点是一种新算法,最近已被证明可以使最大似然估计对于以前难以处理的部分观测的非线性随机动力系统变得可行。 该算法基于一系列滤波操作,该操作收敛于最大似然参数估计,因此被称为迭代滤波。 迭代过滤方法的可用性为开发用作数据分析工具的新型随机动态模型提供了许多可能性。 拟议研究计划的一个组成部分是开发一类适合生物系统的新型马尔可夫链模型,由相互作用的泊松过程组成,其速率受白噪声影响。另一个目标是通过增加对迭代过滤的理论理解来拓宽基于似然的推理实用的动力系统的类别。 具体来说,将基于确定与先前研究的随机近似技术的关系,开发用于迭代过滤的新理论框架。迭代平均和随机方向序列搜索技术对于其他随机逼近方法具有良好的理论和实践特性,有望适用于迭代滤波。 拟议研究的第三个组成部分是证明新方法在促进疟疾传播的新颖且科学相关的数据分析方面的作用。传染病提出了具有挑战性和重要的问题,这些问题长期以来一直是动力系统推理方法的试验场。 通过新型连续时间动态模型进行数据分析将需要处理新的情况来诊断拟合优度,并且将开发和演示适当的技术。非线性随机动态模型广泛用于研究整个科学和工程中发生的系统。 这些模型很容易建立,并且可以进行数学和数值分析。尽管经过数十年的努力,对非线性动力学模型进行统计推断仍然是一个具有挑战性的重要问题。 最近,利用不断增加的计算资源的新方法已经取得了进展。 持续的进步需要建立对成功论证的方法的理论理解,开发新的方法,并展示如何利用这些进步来进一步加深有关感兴趣的动力系统的科学知识。最近了解传染病动态的动机包括新出现的疾病(艾滋病毒/艾滋病、非典型肺炎、大流行性流感)、重新出现的疾病(疟疾、结核病)和生物恐怖主义所带来的威胁。动力系统的推理出现在许多不同的领域,包括经济学、神经科学、化学工程、信号处理和分子生物化学。 统计学领域形成了一座天然桥梁,为更广泛的研究界提供了方法论的进步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Ionides其他文献

Edward Ionides的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward Ionides', 18)}}的其他基金

Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    1761603
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Iterated filtering: New theory, algorithms and applications
迭代过滤:新理论、算法和应用
  • 批准号:
    1308919
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312502
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Exploiting Physical and Dynamical Structures for Real-time Inference in Electric Power Systems
利用物理和动态结构进行电力系统实时推理
  • 批准号:
    2246658
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Sequential Bayesian inference in complex and realistic dynamical systems
复杂且现实的动力系统中的顺序贝叶斯推理
  • 批准号:
    2615884
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Mathematical Analysis and Statistical Inference of Complex Dynamical Systems
复杂动力系统的数学分析和统计推断
  • 批准号:
    RGPIN-2015-05395
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Inference and Scaling in Stochastic Dynamical Systems
随机动力系统中的推理和缩放
  • 批准号:
    RGPIN-2014-05716
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Analysis and Statistical Inference of Complex Dynamical Systems
复杂动力系统的数学分析和统计推断
  • 批准号:
    RGPIN-2015-05395
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Inference and Scaling in Stochastic Dynamical Systems
随机动力系统中的推理和缩放
  • 批准号:
    RGPIN-2014-05716
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Analysis and Statistical Inference of Complex Dynamical Systems
复杂动力系统的数学分析和统计推断
  • 批准号:
    RGPIN-2015-05395
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Analysis and Statistical Inference of Complex Dynamical Systems
复杂动力系统的数学分析和统计推断
  • 批准号:
    RGPIN-2015-05395
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了