Probabilistic Analysis of Large Complex Geometric Structures
大型复杂几何结构的概率分析
基本信息
- 批准号:0805570
- 负责人:
- 金额:$ 13.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fundamental questions pertaining to large, complex geometric structures often involve sums of spatially dependent terms having short range interactions, but complicated long range dependence. A chief goal is to show that sums of spatially dependent terms behave as though they were sums of independent identically distributed random variables. Thus the goal is to show that such sums satisfy laws of large numbers, including moderate and large deviation principles, that the sums have asymptotically a normal distribution, and that the random point measures defined by these sums satisfy functional central limit theorems. Yukich will employ a spatial dependence structure termed stabilization to establish general thermodynamic limits for functionals in geometric probability and to establish Gaussian limits for such functionals. He will apply the general results to establish limit theory for particular problems in stochastic geometry, ballistic deposition models, random geometric networks and graphs, and spatial statistics.Many real world problems involving the performance analysis of transportation and communication networks, extreme values, signal analysis, and even random packing of spheres can be understood as problems involving functionals of interacting particles, where particles interact locally but have long range dependencies. In many cases the dependencies are weak enough so that sums of such functionals behave as though they were the sum of independent particles and therefore, when the number of particles is large, behave roughly as a sum of independent coin tosses, where each coin has its own probability of coming up heads. This project aims to study the similarities between problems involving complex systems in telecommunications, statistical mechanics, and random networks and problems involving independent coin tosses. In the process Yukich, in collaboration with colleagues from the Lehigh engineering school and Bell labs, hopes to increase our understanding of problems arising in networks, random graphs, combinatorial optimization, and extreme values.
与大型复杂几何结构有关的基本问题通常涉及具有短程相互作用但复杂长程依赖性的空间依赖项的总和。一个主要的目标是表明,空间依赖项的总和的行为,好像他们是独立的同分布的随机变量的总和。 因此,我们的目标是要表明,这些款项满足法律的大数,包括中等和大偏差原则,该款项有渐近正态分布,并确定这些款项的随机点措施满足功能中心极限定理。 Yukich将采用一种称为稳定的空间依赖结构来建立几何概率中泛函的一般热力学极限,并为这些泛函建立高斯极限。 他将应用一般结果为随机几何,弹道沉积模型,随机几何网络和图形以及空间统计中的特定问题建立极限理论。许多涉及运输和通信网络性能分析,极值,信号分析甚至球体随机填充的真实的世界问题可以理解为涉及相互作用粒子泛函的问题,其中粒子局部相互作用但具有长程依赖性。 在许多情况下,相关性很弱,以至于这些泛函的和表现得好像是独立粒子的和,因此,当粒子数很大时,它们大致表现为独立抛硬币的和,其中每个硬币都有自己的正面朝上的概率。 本课题的目的是研究电信、统计力学、随机网络中的复杂系统问题与独立抛硬币问题之间的相似性。在这个过程中,Yukich与Lehigh工程学院和贝尔实验室的同事合作,希望增加我们对网络,随机图,组合优化和极值中出现的问题的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Yukich其他文献
Joseph Yukich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Yukich', 18)}}的其他基金
Probabilistic Analysis of Large Geometric Structures
大型几何结构的概率分析
- 批准号:
1406410 - 财政年份:2014
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Probabilistic Analysis of Large Complex Geometric Structures
大型复杂几何结构的概率分析
- 批准号:
1106619 - 财政年份:2011
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Probabilistic Analysis of Random Geometric Structures
随机几何结构的概率分析
- 批准号:
0203720 - 财政年份:2002
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Stochastic Matching and Empirical Discrepancy Problems
数学科学:随机匹配和经验差异问题
- 批准号:
9200656 - 财政年份:1992
- 资助金额:
$ 13.5万 - 项目类别:
Continuing grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
- 批准号:
24K21025 - 财政年份:2024
- 资助金额:
$ 13.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Uncovering Sex-Specific Biological Mechanisms of Depression: Insights from Large-Scale Data Analysis
揭示抑郁症的性别特异性生物学机制:大规模数据分析的见解
- 批准号:
MR/Y011112/1 - 财政年份:2024
- 资助金额:
$ 13.5万 - 项目类别:
Fellowship
RII Track-4:NSF: DyG-MAP: Fast Algorithms for Mining and Analysis of Evolving Patterns in Large Dynamic Graphs
RII Track-4:NSF:DyG-MAP:大型动态图中演化模式挖掘和分析的快速算法
- 批准号:
2323533 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Collaborative Research:CISE-ANR:CIF:Small:Learning from Large Datasets - Application to Multi-Subject fMRI Analysis
合作研究:CISE-ANR:CIF:Small:从大数据集中学习 - 多对象 fMRI 分析的应用
- 批准号:
2316421 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312711 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Development of "ultra" large displacement dynamic analysis algorithm using machine learning
利用机器学习开发“超”大位移动态分析算法
- 批准号:
23K04007 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-linear large signal network analysis
非线性大信号网络分析
- 批准号:
512477106 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Major Research Instrumentation
Identification of coexistence relationships and phenotypic traits of virulence and resistance genes by large-scale E. coli genome analysis
通过大规模大肠杆菌基因组分析鉴定毒力和抗性基因的共存关系和表型特征
- 批准号:
23K07947 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of a novel subgroup of anaplastic thyroid carcinoma by large-scale cohort and comprehensive genetic analysis
通过大规模队列和综合遗传分析阐明未分化甲状腺癌的新亚组
- 批准号:
23K14493 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Large-scale data analysis for improving the process of personalized remote lifestyle intervention
大规模数据分析,改善个性化远程生活方式干预流程
- 批准号:
23K16769 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists