Probabilistic Analysis of Large Complex Geometric Structures
大型复杂几何结构的概率分析
基本信息
- 批准号:1106619
- 负责人:
- 金额:$ 19.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many questions arising in stochastic geometry and applied probability, as well as questions arising in networks, spatial statistics, and statistical mechanics, may be understood in terms of the behavior of large random geometric structures, where `large' means that the randomness involves a growing number of random variables. `Geometric' means that the problems depend heavily on the geometry of the underlying space. Problems involving these complex structures involve understanding the behavior of sums of spatially dependent terms having short range interactions, but complicated long range dependence. Problems of interest in discrete stochastic geometry involve functionals of convex hulls of i.i.d. samples, asymptotic quantization error, the limit behavior of maximal points, and the limit behavior of generalized tessellations in Euclidean space. Problems of interest involving spatial data include dimension estimation of non-linear data clouds embedded in a high dimensional Euclidean space, estimation of entropy, estimation of surface and volume integrals, as well as establishing minimal cost networks for data transmission and energy scaling laws. In each case, one seeks to quantify the `mean' or average behavior of functionals arising in these problems. A chief goal is to show that sums of spatially dependent terms behave as though they were sums of independent identically distributed random variables. One thus wants to show that such sums satisfy laws of large numbers, that they have asymptotically a normal distribution, and that the random point measures defined by these sums satisfy functional central limit theorems, that is to say show their scaling behavior is understood in terms of Brownian sheets.This project aims to solve problems in geometric probability which are of interest to researchers in both industry and academia. Examples include the following: (i) given an unknown object or body (such as an infarction in the human body or an underground deposit of oil) how can we use effectively use random probes of the object to find reliable estimators of its surface area and volume? (ii) given a huge amount of spatial data, how do we use only the interpoint distances of the data to determine intrinsic properties of the data, including its intrinsic dimension? (iii) given a network such as the world wide web, how does one best find ways to efficiently transmit and route information through it, minimizing cost and travel time? Similarly, given a communication network, how does one optimally place transmitters to maximize coverage?(iv) given any complex network, including airline and other transportation networks, how does one efficiently route vehicles to maximizerevenue? The goal of this project is to develop theoretical tools to solve these and related problems and to develop efficient algorithms of use in industry.
随机几何和应用概率中出现的许多问题,以及网络、空间统计和统计力学中出现的问题,可以用大型随机几何结构的行为来理解,其中“大”意味着随机性涉及越来越多的随机变量。 “几何”意味着问题在很大程度上取决于底层空间的几何形状。 涉及这些复杂结构的问题涉及理解具有短程相互作用但复杂的长程依赖性的空间相关项之和的行为。离散随机几何中感兴趣的问题涉及独立同分布的凸包泛函。样本、渐近量化误差、极大点的极限行为以及欧几里得空间中广义镶嵌的极限行为。涉及空间数据的感兴趣的问题包括嵌入高维欧几里得空间中的非线性数据云的维度估计、熵的估计、表面和体积积分的估计,以及建立用于数据传输和能量缩放定律的最小成本网络。在每种情况下,人们都试图量化这些问题中出现的泛函的“平均”或平均行为。 主要目标是证明空间相关项的总和的行为就像独立同分布随机变量的总和一样。 因此,人们想要证明这些和满足大数定律,它们具有渐近正态分布,并且由这些和定义的随机点测度满足函数中心极限定理,也就是说表明它们的标度行为可以用布朗表来理解。该项目旨在解决工业界和学术界研究人员都感兴趣的几何概率问题。示例如下:(i)给定一个未知的物体或身体(例如人体内的梗塞或地下石油沉积物),我们如何有效地使用物体的随机探针来找到其表面积和体积的可靠估计器? (ii) 给定大量空间数据,我们如何仅使用数据的点间距来确定数据的内在属性,包括其内在维度? (iii) 给定一个像万维网这样的网络,如何最好地找到通过它有效传输和路由信息的方法,最大限度地减少成本和旅行时间?同样,给定一个通信网络,如何最佳地放置发射器以最大化覆盖范围?(iv)给定任何复杂的网络,包括航空公司和其他运输网络,如何有效地路由车辆以最大化收入? 该项目的目标是开发理论工具来解决这些及相关问题,并开发在工业中使用的有效算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Yukich其他文献
Joseph Yukich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Yukich', 18)}}的其他基金
Probabilistic Analysis of Large Geometric Structures
大型几何结构的概率分析
- 批准号:
1406410 - 财政年份:2014
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Probabilistic Analysis of Large Complex Geometric Structures
大型复杂几何结构的概率分析
- 批准号:
0805570 - 财政年份:2008
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Probabilistic Analysis of Random Geometric Structures
随机几何结构的概率分析
- 批准号:
0203720 - 财政年份:2002
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Stochastic Matching and Empirical Discrepancy Problems
数学科学:随机匹配和经验差异问题
- 批准号:
9200656 - 财政年份:1992
- 资助金额:
$ 19.5万 - 项目类别:
Continuing grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
- 批准号:
24K21025 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Uncovering Sex-Specific Biological Mechanisms of Depression: Insights from Large-Scale Data Analysis
揭示抑郁症的性别特异性生物学机制:大规模数据分析的见解
- 批准号:
MR/Y011112/1 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Fellowship
Collaborative Research:CISE-ANR:CIF:Small:Learning from Large Datasets - Application to Multi-Subject fMRI Analysis
合作研究:CISE-ANR:CIF:Small:从大数据集中学习 - 多对象 fMRI 分析的应用
- 批准号:
2316421 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
RII Track-4:NSF: DyG-MAP: Fast Algorithms for Mining and Analysis of Evolving Patterns in Large Dynamic Graphs
RII Track-4:NSF:DyG-MAP:大型动态图中演化模式挖掘和分析的快速算法
- 批准号:
2323533 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312711 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Non-linear large signal network analysis
非线性大信号网络分析
- 批准号:
512477106 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Major Research Instrumentation
Development of "ultra" large displacement dynamic analysis algorithm using machine learning
利用机器学习开发“超”大位移动态分析算法
- 批准号:
23K04007 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of a novel subgroup of anaplastic thyroid carcinoma by large-scale cohort and comprehensive genetic analysis
通过大规模队列和综合遗传分析阐明未分化甲状腺癌的新亚组
- 批准号:
23K14493 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Large-scale data analysis for improving the process of personalized remote lifestyle intervention
大规模数据分析,改善个性化远程生活方式干预流程
- 批准号:
23K16769 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identification of coexistence relationships and phenotypic traits of virulence and resistance genes by large-scale E. coli genome analysis
通过大规模大肠杆菌基因组分析鉴定毒力和抗性基因的共存关系和表型特征
- 批准号:
23K07947 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)