Asymptotic Methods in Quantum Statistics
量子统计中的渐近方法
基本信息
- 批准号:0805632
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-15 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The processing of quantum information is emerging as a challenging new field for statisticians. While the concept of inherent randomness is central to quantum mechanics, it cannot be described in terms of traditional probability alone, i.e. notions such as observed random variables, sample spaces etc. are not sufficient. On the simplest level, finite probability laws have to be replaced by states, which are defined as complex positive definite Hermitian matrices of trace one. A very general framework is provided by the theory of operator algebras. In quantum statistical decision theory, families of states generalize families of probability measures (statistical experiments), and the tensor product of many states replaces the classical simple random sample. One problem which is already known in the classical context is the risk asymptotics for symmetric hypothesis testing, or Bayesian discrimination of two states with equal prior weights (the Chernoff bound on the exponential rate of decay of the error probability). In the recent solution of this problem on the quantum level by the investigator and coauthors, a new method has been developed to reduce the quantum risk to a classical one, via associating a pair of probability distributions to a pair of states by measurement on a purification. The present project aims at exploring further this new method, with regard to wider applicability in quantum testing, estimation and possibly in approximation of quantum statistical experiments. Further subjects of study are quantum statistical applications of information theoretic concepts like channel capacity, Kolmogorov complexity, and rate distortion.Natural phenomena on the very small (subatomic) level are governed by quantum theory, where physical laws and cause-effect relationships are thoroughly different from the world of ordinary human experience. Physicists and computer scientists realized some time ago that these phenomena might be harnessed to build computers of extraordinary speed, and also allow rapid advances in cryptography such as breaking all presently known secret codes or constructing new unbreakable ones. While quantum computers have long remained an abstract idea and have only been built at an embryonic stage so far, the theoretical groundwork for far-reaching applications is already being laid in the interdisciplinary field of Quantum Information Theory. In the need for finding benchmarks for optimal performance, researchers in this field have recently begun to exploit some well developed theories of signal processing and statistics. The present project is situated precisely at this new frontier between traditional statistics and quantum theory. The aim is to achieve a better mathematical and statistical understanding of quantum computing and communication, areas which promise to be of great technological impact once they reach an applied stage.
量子信息的处理正在成为统计学家的一个具有挑战性的新领域。虽然内在随机性的概念是量子力学的核心,但它不能单独用传统的概率来描述,即观察到的随机变量,样本空间等概念是不够的。在最简单的层次上,有限概率定律必须用状态来代替,状态被定义为迹为1的复正定厄米特矩阵。算子代数理论提供了一个非常一般的框架。在量子统计决策理论中,态族推广了概率测度族(统计实验),许多态的张量积取代了经典的简单随机样本。一个问题,这是已知的经典背景下的风险渐近对称假设检验,或贝叶斯歧视的两个国家具有相同的先验权重(的Besoff界的指数衰减率的错误概率)。在研究者和合著者最近在量子水平上解决这个问题时,开发了一种新方法,通过纯化测量将一对概率分布与一对状态关联起来,将量子风险降低到经典风险。本项目旨在进一步探索这种新方法,在量子测试,估计和可能的近似量子统计实验方面具有更广泛的适用性。进一步的研究主题是量子统计应用信息理论的概念,如信道容量,柯尔莫哥洛夫复杂度,和率失真。在非常小的(亚原子)水平上的自然现象是由量子理论,其中的物理定律和因果关系是完全不同于世界的普通人类的经验。物理学家和计算机科学家不久前就意识到,这些现象可能被用来建造速度极快的计算机,并允许密码学的快速发展,例如打破所有目前已知的密码或构建新的不可破解的密码。虽然量子计算机长期以来一直是一个抽象的概念,迄今为止仅处于萌芽阶段,但量子信息理论的跨学科领域已经为深远应用奠定了理论基础。在需要找到最佳性能的基准,在这个领域的研究人员最近开始利用一些发达的信号处理和统计理论。目前的项目正好处于传统统计学和量子理论之间的新前沿。其目的是实现量子计算和通信的更好的数学和统计理解,这些领域一旦达到应用阶段,将产生巨大的技术影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Nussbaum其他文献
Passive smoking alters lipid profiles in adolescents.
被动吸烟会改变青少年的血脂状况。
- DOI:
10.1542/peds.88.2.259 - 发表时间:
1991 - 期刊:
- 影响因子:8
- 作者:
J. Feldman;I. Shenker;Michael Nussbaum;Marc S. Jacobson;Ruth A. Etzel;Francis W. Spierto;David E. Lilienfield - 通讯作者:
David E. Lilienfield
Gallbladder disease in children and adolescents
- DOI:
10.1016/s0197-0070(81)80011-3 - 发表时间:
1981-06-01 - 期刊:
- 影响因子:
- 作者:
Martin Fisher;Jonathan Rosenstein;Arnold Schussheim;I. Ronald Shenker;Michael Nussbaum - 通讯作者:
Michael Nussbaum
TREATMENT OF DIABETIC KETOACIDOSIS (DKA) WITH CONTINUOUS LOW-DOSE INSULIN INFUSION
糖尿病酮症酸中毒(DKA)的持续小剂量胰岛素输注治疗
- DOI:
10.1203/00006450-197704000-00359 - 发表时间:
1977-04-01 - 期刊:
- 影响因子:3.100
- 作者:
Michael Nussbaum;Cyril A L Abrams;Ronald Shenker;Philip Lanzkowsky - 通讯作者:
Philip Lanzkowsky
Diffusion approximation for nonparametric autoregression
- DOI:
10.1007/s004400050199 - 发表时间:
1998-12-01 - 期刊:
- 影响因子:1.600
- 作者:
Grigori Milstein;Michael Nussbaum - 通讯作者:
Michael Nussbaum
Long-term follow-up of obesity in adolescents
- DOI:
10.1016/s0197-0070(81)80063-0 - 发表时间:
1981-03-01 - 期刊:
- 影响因子:
- 作者:
Martin Fisher;Roslyn Nitkin;I. Ronald Shenker;Michael Nussbaum - 通讯作者:
Michael Nussbaum
Michael Nussbaum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Nussbaum', 18)}}的其他基金
Asymptotic Equivalence of Quantum Statistical Models
量子统计模型的渐近等价
- 批准号:
1915884 - 财政年份:2019
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
New Horizons in Statistical Decision Theory
统计决策理论的新视野
- 批准号:
1407600 - 财政年份:2014
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Asymptotic Inference for Locally Stationary Processes
局部平稳过程的渐近推理
- 批准号:
1106460 - 财政年份:2011
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Asymptotic Equivalence of Statistical Experiments
统计实验的渐近等价
- 批准号:
0306497 - 财政年份:2003
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Asymptotic Equivalence of Statistical Experiments
统计实验的渐近等价
- 批准号:
0072162 - 财政年份:2000
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
- 批准号:
2401159 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
- 批准号:
2338704 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Quantum Chemical Methods for Studying Photon and Electron Driven Processes
研究光子和电子驱动过程的量子化学方法
- 批准号:
2303111 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Mathematical methods for quantum many-body systems
量子多体系统的数学方法
- 批准号:
2895294 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Studentship
Model Reduction Methods for Extended Quantum Systems: Analysis and Applications
扩展量子系统的模型简化方法:分析与应用
- 批准号:
2350325 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Unifying discrete and continuous methods in quantum information theory
统一量子信息论中的离散和连续方法
- 批准号:
FT230100571 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
ARC Future Fellowships
Excited State Specific Correlation Methods in Quantum Chemistry
量子化学中激发态特定关联方法
- 批准号:
2320936 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Quantum Monte Carlo methods beyond the fixed-node approximation: excitonic effects and hydrogen compounds
超越固定节点近似的量子蒙特卡罗方法:激子效应和氢化合物
- 批准号:
2316007 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Non-perturbative methods to quantum field theory and its applications to superstring theory
量子场论的非微扰方法及其在超弦理论中的应用
- 批准号:
22KJ2096 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for JSPS Fellows