Operads and the Topology of Possibly Singular Spaces

可能奇异空间的操作和拓扑

基本信息

  • 批准号:
    0805881
  • 负责人:
  • 金额:
    $ 14.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-15 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

The PI's investigations will focus on the continuing study and understanding of the topology of spaces, manifolds and orbifolds in the geometric category and varieties and stacks in the algebraic category. The general tools for this analysis are operations on algebraic structures associated to these spaces such as operations on cohomology or on K-theory. Famous examples of this type of operations are String Topology and Gromov-Witten theory. The latter yields operations on the cohomology of a variety while the former provides operations on the homology of the loop space of a compact manifold.Additionally, the PI will use other methods and techniques such as operads, (quasi-)Hopf algebras, representation theory, category theory, moduli spaces, vertex operator algebras and cosimplicial sets in his analysis. Concretely based on his previous work, the PI expects to define and construct a new spectrum from an operad that detects loop spaces as well as to establish a cosimplicial setup for moduli space actions in string topology. Furthermore he expects to define quantum K-theory, Gromov-Witten invariants and characteristic classes for global quotients. Extending these orbifold constructions to other types of global quotients will yield deformation spaces for singularities with symmetries and an orbifold version of the chiral deRham complex. These constructions are tied together by conjectural symmetries such as the Landau-Ginzburg/Calabi-Yau correspondence and mirror symmetry which have their origin in physics.The proposal contributes to several fields of mathematics and as the constructions are often motivated by considerations of string theory and quantum field theory it also finds applications in physics. In particular, the mathematical investigation of the above are expected to bring about important new results that cross-fertilize the subjects of topology, algebra, geometry, and number theory on one hand and on the other hand add to the transfer of knowledge between theoretical physics and mathematics. The outcome will be helpful in understanding a wide spectrum of problems ranging from the purely mathematical such as the basic structure of solutions sets of equations which exhibit symmetries or are not smooth to a better mathematical description of the universe predicted by string theory.
PI的调查将集中在继续研究和理解空间,流形和orbifolds的拓扑结构的几何类别和品种和堆栈的代数类别。这种分析的一般工具是与这些空间相关的代数结构上的操作,例如上同调或K-理论上的操作。这类运算的著名例子是弦拓扑和Gromov-Witten理论。后者给出了簇的上同调运算,而前者提供了紧致流形的循环空间的同调运算。此外,PI将在分析中使用其他方法和技术,例如运算、(准)霍普夫代数、表示论、范畴论、模空间、顶点算子代数和余单集。具体地说,基于他以前的工作,PI希望从检测循环空间的操作数中定义和构建一个新的谱,并为弦拓扑中的模空间动作建立一个余单设置。此外,他希望定义量子K理论,Gromov-Witten不变量和全局不变量的特征类。将这些轨道结构扩展到其他类型的全局对称性,将产生具有对称性的奇点的变形空间和手征deRham复形的轨道版本。这些构造是由物理学中的几何对称性如朗道-金兹伯格/卡拉比-丘对应和镜像对称性联系在一起的。这个提议对数学的几个领域都有贡献,并且由于这些构造通常是由弦理论和量子场论的考虑所激发的,它也在物理学中得到应用。特别是,上述数学调查预计将带来重要的新成果,交叉施肥学科的拓扑,代数,几何和数论一方面,另一方面增加了理论物理和数学之间的知识转移。 结果将有助于理解广泛的问题,从纯粹的数学问题,如解的基本结构,表现出对称性或不光滑的方程组,到弦理论预测的宇宙的更好的数学描述。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ralph Kaufmann其他文献

A Novel Phase Diagram for a Spin-1 System Exhibiting a Haldane Phase
展示 Haldane 相的 Spin-1 系统的新颖相图
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohamad Mousa;B. Wehefritz;S. Kais;Shawn Cui;Ralph Kaufmann
  • 通讯作者:
    Ralph Kaufmann

Ralph Kaufmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ralph Kaufmann', 18)}}的其他基金

Floer theory in gauge theory and symplectic geometry
规范论和辛几何中的弗洛尔理论
  • 批准号:
    1007846
  • 财政年份:
    2010
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Standard Grant
Mirror Symmetry and Frobenius Manifolds
镜像对称和弗罗贝尼乌斯流形
  • 批准号:
    0070681
  • 财政年份:
    2000
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
  • 批准号:
    2348830
  • 财政年份:
    2024
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Standard Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
  • 批准号:
    2340394
  • 财政年份:
    2024
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Continuing Grant
Conference: Midwest Topology Seminar
会议:中西部拓扑研讨会
  • 批准号:
    2341204
  • 财政年份:
    2024
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Standard Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
  • 批准号:
    2300172
  • 财政年份:
    2024
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Continuing Grant
Algebraic Structures in String Topology
弦拓扑中的代数结构
  • 批准号:
    2405405
  • 财政年份:
    2024
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
  • 批准号:
    2340465
  • 财政年份:
    2024
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Continuing Grant
CAREER: Elucidating the Impact of Side-Chain Topology on the Structure-Property Relationship in Bottlebrush Polymers
职业:阐明侧链拓扑对洗瓶刷聚合物结构-性能关系的影响
  • 批准号:
    2340664
  • 财政年份:
    2024
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了