Direct and inverse problems for reflectance optical tomography and spectroscopy in layered tissues
层状组织中反射光学断层扫描和光谱学的正问题和反问题
基本信息
- 批准号:0806039
- 负责人:
- 金额:$ 10.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We study light propagation in layered tissues for applications in reflectance optical tomography and spectroscopy. Light propagation in tissues is governed by the radiative transport equation. This integral-partial differential equation takes into account absorption and scattering by inhomogeneities. Layered media are important tissue models because they take into account the different optical properties of superficial epithelial tissues (where most precancers form) and those of deep stromal tissues. A key point throughout this research lies in understanding how diagnostic information is contained in measurements of multiply scattered light. In particular, we will study three general problems: (i) Direct problems of partially polarized light in tissues,(ii) Inverse problems for reflectance optical tomography, and (iii) Parameter identification and estimation for reflectance optical spectroscopy. These three problems involve a broad variety of mathematics research in numerical analysis and scientific computing, asymptotic analysis, and inverse problems. A key theme throughout this research project is extracting the most diagnostic information from very limited data inherent in reflectance measurements. Through this applied mathematics research, we hope to develop novel methods that find use in engineering devices used for the early detection and diagnosis of cancer.We study light propagation in layered tissues using analytical and computational methods. We apply our results to biomedical optical imaging problems in reflectance optical tomography and spectroscopy. Layered tissue models are necessary to understand the interaction of light with a thin epithelium (where most precancers form) situated on top of a thick stroma. The overarching goal of this research is to develop more sophisticated theories to predict and interpret diagnostic data. In particular, we are working to develop methods for detecting and diagnosing early stages of cancer in epithelial tissues. The key to developing theory that translates directly to the laboratory is developing methods that extract the most information out of the inherently limited data in reflectance measurements. By doing so, we hope to develop methods for the early detection and diagnosis of cancer.
我们研究了光在分层组织中的传播,以应用于反射光学层析成像和光谱学。光在组织中的传播受辐射传输方程支配。该积分-偏微分方程考虑了非均匀性的吸收和散射。分层介质是重要的组织模型,因为它们考虑了浅表上皮组织(大多数癌前病变形成的地方)和深层基质组织的不同光学特性。整个研究的一个关键点在于理解诊断信息如何包含在多重散射光的测量中。特别是,我们将研究三个一般性问题:(一)直接问题的部分偏振光在组织中,(二)反射光学层析成像的逆问题,和(三)参数识别和估计的反射光学光谱。这三个问题涉及到数值分析和科学计算、渐近分析和反问题等广泛的数学研究。整个研究项目的一个关键主题是从反射率测量中固有的非常有限的数据中提取最多的诊断信息。通过应用数学的研究,我们希望开发新的方法,用于工程设备,用于早期检测和诊断癌症。我们研究光在分层组织中的传播,使用分析和计算方法。我们将我们的结果应用于生物医学光学成像问题的反射光学层析成像和光谱。分层组织模型对于理解光与位于厚基质顶部的薄上皮(大多数癌前病变形成的地方)的相互作用是必要的。这项研究的首要目标是开发更复杂的理论来预测和解释诊断数据。特别是,我们正在努力开发用于检测和诊断上皮组织中癌症早期阶段的方法。开发直接转化为实验室的理论的关键是开发从反射率测量中固有的有限数据中提取最多信息的方法。通过这样做,我们希望开发出早期检测和诊断癌症的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arnold Kim其他文献
Prescriptive Grammar for Clinical Prescribing Workflow
临床处方工作流程的处方语法
- DOI:
10.4018/ijeach.2019010109 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Kalle Kauranen;Arnold Kim;P. Osial - 通讯作者:
P. Osial
Arnold Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arnold Kim', 18)}}的其他基金
RTG: Data-Intensive Research and Computing at the University of California, Merced
RTG:加州大学默塞德分校的数据密集型研究和计算
- 批准号:
1840265 - 财政年份:2019
- 资助金额:
$ 10.25万 - 项目类别:
Continuing Grant
EXTREEMS-QED: Data-Enabled Science and Computational Analysis Research, Training and Education for Students (DESCARTES) Program
EXTREEMS-QED:数据支持的科学和计算分析研究、学生培训和教育 (DESCARTES) 计划
- 批准号:
1331109 - 财政年份:2013
- 资助金额:
$ 10.25万 - 项目类别:
Continuing Grant
UC Merced Mathematics and Physical Science Scholars (MAPS)
加州大学默塞德分校数学和物理科学学者 (MAPS)
- 批准号:
1059551 - 财政年份:2011
- 资助金额:
$ 10.25万 - 项目类别:
Continuing Grant
Collaborative Research: FRG: Inverse Problems in Transport Theory
合作研究:FRG:传输理论中的反问题
- 批准号:
0553569 - 财政年份:2006
- 资助金额:
$ 10.25万 - 项目类别:
Standard Grant
Collaborative Research: Image Reconstruction Algorithms for Optical Tomography with Large Data Sets Using the Radiative Transport Equation
合作研究:使用辐射传输方程的大数据集光学断层扫描图像重建算法
- 批准号:
0616228 - 财政年份:2006
- 资助金额:
$ 10.25万 - 项目类别:
Standard Grant
Mathematical investigation of light propagation in tissues for physiological monitoring and tissue imaging
用于生理监测和组织成像的组织中光传播的数学研究
- 批准号:
0504858 - 财政年份:2005
- 资助金额:
$ 10.25万 - 项目类别:
Standard Grant
Ultra-Short Optical Pulse Propagation in Random Media
随机介质中的超短光脉冲传播
- 批准号:
0071578 - 财政年份:2000
- 资助金额:
$ 10.25万 - 项目类别:
Fellowship Award
相似国自然基金
新型简化Inverse Lax-Wendroff方法的发展与应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于高阶格式的Inverse Lax-Wendroff方法及其稳定性分析
- 批准号:11801143
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
LEAPS-MPS: Direct methods for data rich inverse problems
LEAPS-MPS:数据丰富的反问题的直接方法
- 批准号:
2213493 - 财政年份:2022
- 资助金额:
$ 10.25万 - 项目类别:
Standard Grant
Direct and Inverse Scattering Problems in Elastic Waves: Analysis and Computation
弹性波中的正向和逆向散射问题:分析与计算
- 批准号:
1912704 - 财政年份:2019
- 资助金额:
$ 10.25万 - 项目类别:
Standard Grant
Direct and Inverse Electromagnetic Scattering Problems for Complex Periodic Media
复杂周期性介质的正向和逆向电磁散射问题
- 批准号:
1812693 - 财政年份:2018
- 资助金额:
$ 10.25万 - 项目类别:
Standard Grant
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
- 批准号:
RGPIN-2014-04642 - 财政年份:2017
- 资助金额:
$ 10.25万 - 项目类别:
Discovery Grants Program - Individual
Direct and Inverse Problems for Cardinality Questions in Additive Combinatorics
加法组合中基数问题的正问题和反问题
- 批准号:
1723016 - 财政年份:2016
- 资助金额:
$ 10.25万 - 项目类别:
Continuing Grant
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
- 批准号:
RGPIN-2014-04642 - 财政年份:2016
- 资助金额:
$ 10.25万 - 项目类别:
Discovery Grants Program - Individual
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
- 批准号:
RGPIN-2014-04642 - 财政年份:2015
- 资助金额:
$ 10.25万 - 项目类别:
Discovery Grants Program - Individual
Direct and Inverse Problems for Cardinality Questions in Additive Combinatorics
加法组合中基数问题的正问题和反问题
- 批准号:
1500984 - 财政年份:2015
- 资助金额:
$ 10.25万 - 项目类别:
Continuing Grant
New High-Accurate Numerical Methods for Inverse Problems by the Direct Computations of Integral Equations of the First Kind
第一类积分方程直接计算反问题的高精度数值新方法
- 批准号:
26400198 - 财政年份:2014
- 资助金额:
$ 10.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
- 批准号:
RGPIN-2014-04642 - 财政年份:2014
- 资助金额:
$ 10.25万 - 项目类别:
Discovery Grants Program - Individual