Direct and Inverse Electromagnetic Scattering Problems for Complex Periodic Media

复杂周期性介质的正向和逆向电磁散射问题

基本信息

  • 批准号:
    1812693
  • 负责人:
  • 金额:
    $ 13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

The interaction and scattering of light by periodic structures at the nanoscale is a topic of great significance in the area of nanophotonics and metamaterials technology. With the current rapid development of this enabling technology, there is a high demand on new mathematical theories and computational algorithms for both direct and inverse problems of the light scattering by periodic complex media or periodic metamaterials. This project aims to develop such theories and algorithms. Results from this project will advance knowledge, understanding and imaging techniques in the technology of nanophotonics and metamaterials. For instance, the mathematical theories and the computational algorithms developed for the direct problems are extremely useful for the simulation, fabrication and maintaining of optical devices. The imaging techniques developed for the inverse problems can be potentially of practical use for non-destructive tests, which help to detect and characterize discrete flaws in optical components and devices.The project contains two main areas of study: the mathematical and numerical analysis for direct scattering problems, and the development of efficient inversion algorithms for inverse scattering problems. More precisely, for the direct problem, the PI and his colleagues will work on the following topics: 1) develop volume integral equation formulations for direct scattering problems for periodic complex media; 2) develop fast integral equation-based numerical solvers for the direct scattering problems; 3) study interior transmission eigenvalues for periodic complex media; 4) study well-posedness of the scattering by chiral metamaterials. The proposed research for the inverse problem includes the topics: 1) develop sampling methods for imaging of periodic complex media; 2) develop sampling methods for the detection of local defects in photonic crystals; 3) develop globally convergent methods for the identification of material parameters for photonic crystals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纳米尺度上周期性结构对光的相互作用和散射是纳米光子学和超材料技术领域中一个具有重要意义的课题。随着这一使能技术的迅速发展,对周期复杂介质或周期超材料的光散射正问题和反问题的新的数学理论和计算算法提出了更高的要求。该项目旨在开发这样的理论和算法。该项目的成果将促进纳米光子学和超材料技术方面的知识、理解和成像技术。例如,为正问题开发的数学理论和计算算法对光学器件的模拟、制造和维护非常有用。为反问题开发的成像技术可用于无损检测,有助于检测和表征光学元件和器件中的离散缺陷。该项目包括两个主要研究领域:直接散射问题的数学和数值分析,以及反散射问题的高效反演算法的发展。更准确地说,对于正问题,Pi和他的同事们将在以下方面开展工作:1)建立周期复杂介质直接散射问题的体积积分方程公式;2)开发基于积分方程的直接散射问题的快速数值求解器;3)研究周期复杂介质的内部传输本征值;4)研究手性超材料散射的适定性。建议的反问题研究包括:1)开发周期性复杂介质成像的采样方法;2)开发检测光子晶体局部缺陷的采样方法;3)开发识别光子晶体材料参数的全局收敛方法。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Imaging of 3D objects with experimental data using orthogonality sampling methods
使用正交采样方法利用实验数据对 3D 物体进行成像
  • DOI:
    10.1088/1361-6420/ac3d85
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Le, Thu;Nguyen, Dinh-Liem;Schmidt, Hayden;Truong, Trung
  • 通讯作者:
    Truong, Trung
Sampling type method combined with deep learning for inverse scattering with one incident wave
  • DOI:
    10.48550/arxiv.2207.10011
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thu Le;Dinh-Liem Nguyen;V. Nguyen;TrungDung Truong
  • 通讯作者:
    Thu Le;Dinh-Liem Nguyen;V. Nguyen;TrungDung Truong
On the inverse scattering from anisotropic periodic layers and transmission eigenvalues
  • DOI:
    10.1080/00036811.2020.1836349
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    I. Harris;Dinh-Liem Nguyen;J. Sands;TrungDung Truong
  • 通讯作者:
    I. Harris;Dinh-Liem Nguyen;J. Sands;TrungDung Truong
Direct sampling methods for isotropic and anisotropic scatterers with point source measurements
  • DOI:
    10.3934/ipi.2022015
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    I. Harris;Dinh-Liem Nguyen;Thi-Phong Nguyen
  • 通讯作者:
    I. Harris;Dinh-Liem Nguyen;Thi-Phong Nguyen
Imaging of bi-anisotropic periodic structures from electromagnetic near-field data
  • DOI:
    10.1515/jiip-2020-0114
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Dinh-Liem Nguyen;TrungDung Truong
  • 通讯作者:
    Dinh-Liem Nguyen;TrungDung Truong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dinh-Liem Nguyen其他文献

Spectral Methods for Direct and Inverse Scattering from Periodic Structures
  • DOI:
  • 发表时间:
    2012-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dinh-Liem Nguyen
  • 通讯作者:
    Dinh-Liem Nguyen
The factorization method for the Drude-Born-Fedorov model for periodic chiral structures
  • DOI:
    10.3934/ipi.2016010
  • 发表时间:
    2016-05
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Dinh-Liem Nguyen
  • 通讯作者:
    Dinh-Liem Nguyen
Orthogonality sampling type methods for an inverse acoustic scattering problem
  • DOI:
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dinh-Liem Nguyen
  • 通讯作者:
    Dinh-Liem Nguyen
Shape identification of anisotropic diffraction gratings for TM-polarized electromagnetic waves
  • DOI:
    10.1080/00036811.2013.835041
  • 发表时间:
    2014-05
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Dinh-Liem Nguyen
  • 通讯作者:
    Dinh-Liem Nguyen

Dinh-Liem Nguyen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dinh-Liem Nguyen', 18)}}的其他基金

Novel Sampling Methods for Electromagnetic Inverse Scattering Theory
电磁逆散射理论的新颖采样方法
  • 批准号:
    2208293
  • 财政年份:
    2022
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant

相似国自然基金

新型简化Inverse Lax-Wendroff方法的发展与应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高阶格式的Inverse Lax-Wendroff方法及其稳定性分析
  • 批准号:
    11801143
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel Sampling Methods for Electromagnetic Inverse Scattering Theory
电磁逆散射理论的新颖采样方法
  • 批准号:
    2208293
  • 财政年份:
    2022
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Algorithms and Systems for Electromagnetic and Ultrasound Inverse Problems
电磁和超声反问题的算法和系统
  • 批准号:
    RGPIN-2017-05496
  • 财政年份:
    2021
  • 资助金额:
    $ 13万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Systems for Electromagnetic and Ultrasound Inverse Problems
电磁和超声反问题的算法和系统
  • 批准号:
    RGPIN-2017-05496
  • 财政年份:
    2020
  • 资助金额:
    $ 13万
  • 项目类别:
    Discovery Grants Program - Individual
Nondestructive evaluation of steel corrosion in the concrete structures based on the inverse analysis of electromagnetic responses near the surface of concrete
基于混凝土表面电磁响应反演的混凝土结构中钢材腐蚀无损评价
  • 批准号:
    20H02221
  • 财政年份:
    2020
  • 资助金额:
    $ 13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Algorithms and Systems for Electromagnetic and Ultrasound Inverse Problems
电磁和超声反问题的算法和系统
  • 批准号:
    RGPIN-2017-05496
  • 财政年份:
    2019
  • 资助金额:
    $ 13万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Systems for Electromagnetic and Ultrasound Inverse Problems
电磁和超声反问题的算法和系统
  • 批准号:
    RGPIN-2017-05496
  • 财政年份:
    2018
  • 资助金额:
    $ 13万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Systems for Electromagnetic and Ultrasound Inverse Problems
电磁和超声反问题的算法和系统
  • 批准号:
    RGPIN-2017-05496
  • 财政年份:
    2017
  • 资助金额:
    $ 13万
  • 项目类别:
    Discovery Grants Program - Individual
Electromagnetic Inverse Problems: Visibility and Invisibility
电磁反演问题:可见性和不可见性
  • 批准号:
    1544138
  • 财政年份:
    2014
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Electromagnetic Inverse Problems: Visibility and Invisibility
电磁反演问题:可见性和不可见性
  • 批准号:
    1161129
  • 财政年份:
    2012
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Computational electromagnetics and electromagnetic inverse imaging
计算电磁学与电磁反成像
  • 批准号:
    121454-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 13万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了