Slow Dynamics in Random Media

随机媒体中的缓慢动态

基本信息

  • 批准号:
    0806180
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-06-01 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

This project addresses topics at the interface between probability theory and statistical physics of disordered media. It proposes to build a systematic understanding of the slowing down or trapping of stochastic dynamics of disordered systems. The understanding is that for some of these systems the slowing down is due to localized regions in configuration space where the system spends most of its time. A general paradigm (the Trap Model) has been introduced in physics literature and studied recently by the PI and various collaborators. This project proposes to do three things: sharpen this understanding of this phenomenological model, show that it is relevant for mean-field Spin Glass dynamics (and aging) in a wide range of time scale (building on recent work of the PI and collaborators), and introduce the point of view of trap models in hard problems of Random Walks on percolation clusters. The PI will investigate the first topic and second topic with graduate students and an established international network of collaborators. The Co-PI will investigate one of the two themes of the third topic (Biased random walks on supercritical clusters) with the PI for the duration of his appointment at Courant Institute (approximately two years). The second topic will be investigated by the PI, the Co-PI and external collaborators. Many branches of modern science are challenged with the complicated task of attaining a clear understanding of the time evolution of complex systems, or more specifically, of large systems comprised of many components and with complex local rules. In particular, the lessons learned in the last century in regards to the properties of statistical equilibrium seem of little value for most of these complex systems as they tend to be, under usual conditions, always very far from equilibrium and, in a sense, always in a transient regime. They achieve their equilibrium very slowly and exhibit fascinating properties along the way; one of them being "aging". These very slow evolutions are the subject of this proposal for addressing well chosen paradigms which are known to be complex and "universal", i.e. representative of a wide class of such phenomena.
本项目探讨的主题是无序介质的概率论和统计物理之间的接口。它提出对无序系统的随机动力学的减速或捕获建立一个系统的理解。我们的理解是,对于这些系统中的一些,减速是由于系统在构型空间中花费大部分时间的局部区域。一个一般的范例(陷阱模型)已经在物理文献中被介绍,最近由PI和各种合作者研究。该项目建议做三件事:加深对这种现象学模型的理解,表明它在大范围时间尺度下与平均场自旋玻璃动力学(和老化)相关(建立在PI和合作者最近的工作基础上),并在渗透集群上随机漫步的难题中引入陷阱模型的观点。PI将与研究生和已建立的国际合作者网络一起研究第一个和第二个主题。在他在Courant研究所任职期间(大约两年),Co-PI将与PI一起研究第三个主题(超临界簇上的有偏随机漫步)的两个主题之一。第二个主题将由PI, Co-PI和外部合作者调查。现代科学的许多分支都面临着一项复杂任务的挑战,即对复杂系统,或者更具体地说,对由许多组成部分和具有复杂局部规则的大系统的时间演化有一个清晰的认识。特别是,上个世纪关于统计平衡特性的经验教训似乎对大多数这些复杂系统没有什么价值,因为它们往往在通常情况下,总是离平衡很远,在某种意义上,总是处于瞬态状态。它们非常缓慢地达到平衡,并在此过程中表现出迷人的特性;其中之一就是“衰老”。这些非常缓慢的进化是本提案的主题,旨在解决精心选择的范例,这些范例已知是复杂的和“普遍的”,即代表了此类现象的广泛类别。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gerard Ben Arous其他文献

Singularities of Hypoelliptic Green Functions
  • DOI:
    10.1023/a:1008608825872
  • 发表时间:
    1998-01-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Gerard Ben Arous;Mihai Gradinaru
  • 通讯作者:
    Mihai Gradinaru

Gerard Ben Arous的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gerard Ben Arous', 18)}}的其他基金

Random Matrices, Complexity and Slow Dynamics in Random Media
随机媒体中的随机矩阵、复杂性和慢速动态
  • 批准号:
    1209165
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Special Trimester on Interacting Particle Systems, Statistical Mechanics and Probability Theory
相互作用粒子系统、统计力学和概率论的特殊学期
  • 批准号:
    0825081
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Summer School on Mathematical Statistical Physics
数理统计物理暑期学校
  • 批准号:
    0507898
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Study of physical measures for random non-hyperbolic dynamics
随机非双曲动力学的物理测量研究
  • 批准号:
    23K03188
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic Problems in Random Dynamics
随机动力学中的渐近问题
  • 批准号:
    2246704
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Spatio-temporal dynamics of general diffusive processes in heterogeneous and random environments
异构随机环境中一般扩散过程的时空动力学
  • 批准号:
    RGPIN-2018-04371
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
  • 批准号:
    RGPIN-2017-05321
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Random Structures and Dynamics Arising from Questions in Social, Biological, and Physical Sciences
社会、生物和物理科学问题引起的随机结构和动力学
  • 批准号:
    2154564
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Population Dynamics in Random Environments: Theory and Approximation
合作研究:随机环境中的种群动态:理论与近似
  • 批准号:
    2147903
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Statistics and dynamics of conditioned random systems
条件随机系统的统计和动力学
  • 批准号:
    2614106
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
  • 批准号:
    RGPIN-2017-05321
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Spatio-temporal dynamics of general diffusive processes in heterogeneous and random environments
异构随机环境中一般扩散过程的时空动力学
  • 批准号:
    RGPIN-2018-04371
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics in Random Media: from Homogenization to Stochasticity
随机介质中的动力学:从同质化到随机性
  • 批准号:
    2203007
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了