RUI: Waves in Hamiltonian Systems with Applications to Bose-Einstein Condensates
RUI:哈密顿系统中的波及其在玻色-爱因斯坦凝聚中的应用
基本信息
- 批准号:0806636
- 负责人:
- 金额:$ 14.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-15 至 2011-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
KapitulaDMS-0806636 The governing equations for the wave function of aBose-Einstein condensate (BEC) are Hamiltonian; in particular,they are a variant of the nonlinear Schrodinger equation known asthe Gross-Pitaevskii equation. The analysis of this physicalsystem leads to several intriguing fundamental mathematicalproblems for Hamiltonian systems which deal with the existence,spectral stability, and nonlinear stability of waves. The majormathematical problems to be addressed in this proposal include(a) the construction and spectral stability of fullythree-dimensional waves in the presence of a cigar magnetic trapvia the technique of spatial dynamics, (b) the construction andspectral stability of two-dimensional periodic waves in thepresence of an optical lattice, and (c) a careful study ofeigenvalues with negative Krein signature. Regarding (c), thereare two avenues that are to be explored: (1) the determination ofembedded eigenvalues of negative sign in the case that thesolitary wave is realized as a limit of a family of periodicwaves, and (2) the determination of the exact number ofeigenvalues with negative sign. Especially since the 1997 Nobel Prize winning work of S.Chu, C. Cohen-Tannoudji, and W. Phillips on the exotic quantumphenomenon known as BECs, there has been a great deal of excitingexperimental and theoretical work in the study of BECs. In orderto form a BEC, it is necessary that the matter is cooled tobillionths of a degree above absolute zero; hence, BECs areextremely fragile, and it is likely to be some time before anypractical applications are developed. Nevertheless, they haveproved to be useful in exploring a wide range of questions infundamental physics. Examples include experiments that havedemonstrated interference between condensates due towave-particle duality, the study of superfluidity and quantizedvortices, and the slowing of light pulses to very low speeds. Vortices in BECs are also currently the subject ofanalogue-gravity research, studying the possibility of modelingblack holes and their related phenomena in the lab. Themathematical results of this proposal will help boththeoreticians and experimentalists better understand the dynamicsof not only patterns such as vortices, necklaces, and solitons inBECs, but also the dynamics of waves and patterns in Hamiltoniansystems which are used to model interesting phenomena such aswaves in fluids and light propagation in optical fibers. Theinclusion and training of undergraduate students is an integralpart of this proposal. Introducing students to the interplaybetween applications and experiments, numerics, and formal andrigorous analysis, will lead them to being excited about seeingthe connections between the physical world and the mathematicalworld. This will further lead the participating students towardsa deeper appreciation for the usefulness of mathematics in otherdisciplines, and perhaps then allow them to be open to the ideaof doing more serious applied mathematics at the graduate level. Calvin College has a history of producing successful Ph.D.students in mathematics and statistics. Approximately one-thirdof these students have been women, who are significantlyunderrepresented in the mathematical sciences. Furthermore,Calvin has been very successful in the education and training ofsecondary education teachers. As a consequence of this award,the investigator will be able to fruitfully support thecollege-wide effort in training future researchers and educatorsin the mathematical sciences.
KapitulaDMS-0806636 玻色-爱因斯坦凝聚体(BEC)的波函数的控制方程是哈密顿的;特别地,它们是被称为Gross-Pitaevskii方程的非线性薛定谔方程的变体。 对这个物理系统的分析引出了几个有趣的哈密顿系统的基本物理问题,这些问题涉及波的存在性、谱稳定性和非线性稳定性。 本方案主要解决的数学问题包括:(a)通过空间动力学技术在雪茄磁阱中构造全三维波及其谱稳定性;(B)在光晶格中构造二维周期波及其谱稳定性;(c)对具有负Krein特征的特征值的细致研究。 关于(c),有两条途径有待探索:(1)在孤立波被实现为一个行波族的极限的情况下,确定负符号的嵌入特征值;(2)确定负符号特征值的确切数目。 特别是1997年诺贝尔奖得主朱棣文、C. Cohen-Tannoudji和W.自从菲利普斯提出奇异量子现象BEC以来,人们在BEC的研究方面做了大量令人兴奋的实验和理论工作。 为了形成BEC,物质必须冷却到绝对零度以上十亿分之一度;因此,BEC非常脆弱,在任何实际应用开发之前可能还需要一段时间。尽管如此,它们在探索基础物理学中的广泛问题时被证明是有用的。 例子包括已经证明了由于波粒二象性而导致的凝聚体之间的干涉的实验,超流性和量子化涡旋的研究,以及光脉冲减慢到非常低的速度。BEC中的涡旋也是目前类比重力研究的主题,研究在实验室中模拟黑洞及其相关现象的可能性。 该提议的数学结果将帮助理论家和实验家更好地理解不仅是BEC中的涡旋、项链和孤立子等图案的动力学,而且是Hamilton系统中的波和图案的动力学,这些系统用于模拟有趣的现象,例如流体中的波和光纤中的光传播。 对本科生的包容和培训是这一建议的一个组成部分。向学生介绍应用和实验、数学以及形式和华丽分析之间的相互作用,将使他们对看到物理世界和数学世界之间的联系感到兴奋。 这将进一步引导参与的学生对数学在其他学科中的有用性有更深的认识,也许还能让他们接受在研究生阶段做更严肃的应用数学的想法。卡尔文学院在培养数学和统计学博士生方面有着悠久的历史。这些学生中大约有三分之一是女性,而女性在数学科学领域的代表性明显不足。此外,卡尔文在中学教师的教育和培训方面也非常成功。 作为这个奖项的结果,调查员将能够卓有成效地支持整个学院在培养未来的研究人员和教育工作者在数学科学的努力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Todd Kapitula其他文献
Spatial dynamics of time periodic solutions for the Ginzburg-Landau equation
- DOI:
10.1007/bf00916827 - 发表时间:
1996-03-01 - 期刊:
- 影响因子:1.600
- 作者:
Todd Kapitula;Stanislaus Maier-Paape - 通讯作者:
Stanislaus Maier-Paape
Todd Kapitula的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Todd Kapitula', 18)}}的其他基金
RUI: Nonlinear spectral problems in Hamiltonian systems
RUI:哈密顿系统中的非线性谱问题
- 批准号:
1108783 - 财政年份:2011
- 资助金额:
$ 14.3万 - 项目类别:
Standard Grant
Waves in Hamiltonian Systems with Applications in Nonlinear Optics and BECs
哈密顿系统中的波及其在非线性光学和 BEC 中的应用
- 批准号:
0304982 - 财政年份:2003
- 资助金额:
$ 14.3万 - 项目类别:
Standard Grant
Stability of Travelling Waves with Applications in NonlinearOptics
行波稳定性及其在非线性光学中的应用
- 批准号:
9803408 - 财政年份:1998
- 资助金额:
$ 14.3万 - 项目类别:
Standard Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Probing ultralight bosons with black holes and gravitational waves
用黑洞和引力波探测超轻玻色子
- 批准号:
DE240100206 - 财政年份:2024
- 资助金额:
$ 14.3万 - 项目类别:
Discovery Early Career Researcher Award
Differentiating Cyclogenesis with and without Large Amplitude Mesoscale Gravity Waves: Implications for Rapidly Varying Heavy Precipitation and Gusty Winds
区分有和没有大振幅中尺度重力波的气旋发生:对快速变化的强降水和阵风的影响
- 批准号:
2334171 - 财政年份:2024
- 资助金额:
$ 14.3万 - 项目类别:
Continuing Grant
Travel: International Workshop on Numerical Modeling of Earthquake Motions: Waves and Ruptures
旅行:地震运动数值模拟国际研讨会:波浪和破裂
- 批准号:
2346964 - 财政年份:2024
- 资助金额:
$ 14.3万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: CREST-PRP: Exploring the Impact of Heat-Waves and Nutrients on Bloom-Forming and Habitat-Building Seaweeds Along the South Florida Coast
博士后奖学金:CREST-PRP:探索热浪和营养物质对南佛罗里达海岸海藻形成和栖息地建设的影响
- 批准号:
2401066 - 财政年份:2024
- 资助金额:
$ 14.3万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 14.3万 - 项目类别:
Standard Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247396 - 财政年份:2024
- 资助金额:
$ 14.3万 - 项目类别:
Standard Grant
Hilbert's Sixth Problem: From Particles to Waves
希尔伯特第六个问题:从粒子到波
- 批准号:
2350242 - 财政年份:2024
- 资助金额:
$ 14.3万 - 项目类别:
Continuing Grant
Collaborative Research: Characterizing Atmospheric Tropical-waves of the Lower Stratosphere with Reel-down Atmospheric Temperature Sensing for Strateole-2--RATS Chasing CATS!
合作研究:利用 Strateole-2 的卷轴大气温度传感来表征平流层下部的大气热带波——RATS 追逐 CATS!
- 批准号:
2335083 - 财政年份:2024
- 资助金额:
$ 14.3万 - 项目类别:
Continuing Grant
Collaborative Research: Characterizing Atmospheric Tropical-waves of the Lower Stratosphere with Reel-down Atmospheric Temperature Sensing for Strateole-2--RATS Chasing CATS!
合作研究:利用 Strateole-2 的卷轴大气温度传感来表征平流层下部的大气热带波——RATS 追逐 CATS!
- 批准号:
2335082 - 财政年份:2024
- 资助金额:
$ 14.3万 - 项目类别:
Continuing Grant
Continuing Measurements of Water Vapor, Clouds, Aerosol, and Waves Above, and Across, the Tropical Tropopause Layer with in Situ Instruments on Circum-Tropical Isopycnic Balloons
使用环热带等密度气球上的现场仪器持续测量热带对流层顶层上方和上方的水蒸气、云、气溶胶和波浪
- 批准号:
2336110 - 财政年份:2024
- 资助金额:
$ 14.3万 - 项目类别:
Continuing Grant