Stability of Travelling Waves with Applications in NonlinearOptics
行波稳定性及其在非线性光学中的应用
基本信息
- 批准号:9803408
- 负责人:
- 金额:$ 5.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-06-15 至 2001-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The cubic nonlinear Schroedinger (NLS) equation is a partial differential equation that describes pulse train generation in solid stateor fiber lasers, or pulse propagation in long distance communication systems under ideal conditions. In order to describe the situation under more realistic physical scenarios, i.e., with losses, spectral filtering, etc., one must consider extended model equations which are perturbations of the NLS and which depend on the physical situation that is being modelled. Examples include models for phase-matched third-harmonic generation, materials with higher-order nonlinearities, and passively mode-locked fiber lasers. Numerous recent research efforts have indicated that these extended models are very robust. The central mathematical question of the planned research is the stability of propagating pulses, incorporating for example effects of small gains and losses in the optical fiber, and the correct balance of these effects which will guarantee stable pulses. A mathematically rigorous analytical study of the existence and stability of solitons for the governing equations has been lacking and will be developed. The work will exploit a recently discovered mathematical structure for the extended model equations. It makes use of the fact that these equations are very closeto integrable equations that have been studied extensively.Fiberoptic cables are of growing importance in long distance communications.The pulses which carry information in such cables can be described bymathematical equations that depend on the medium, among other things. The exactform of the equations is usually not known. In order for information to arrive undistorted at its destination, it is essential that these pulses remain stable as they travel along the fiber. In this work, rigorous mathematical methods to study this stability will be developed. The methods will also be robust underchanges of the medium and will therefore have wide potential.
三次非线性薛定谔(NLS)方程是描述理想条件下固体激光器中脉冲串产生或长距离通信系统中脉冲传输的偏微分方程。 为了描述更现实的物理场景下的情况,即,由于损耗、频谱滤波等,必须考虑扩展的模型方程,这些方程是NLS的扰动,并且依赖于被建模的物理情况。 例子包括相位匹配的三次谐波产生模型、高阶非线性材料和被动锁模光纤激光器。 许多最近的研究工作表明,这些扩展模型是非常强大的。 计划研究的中心数学问题是传播脉冲的稳定性,例如光纤中的小增益和损耗的影响,以及这些影响的正确平衡,这将保证稳定的脉冲。 一个严格的数学分析研究的存在性和稳定性的控制方程一直缺乏和将开发。 这项工作将利用最近发现的数学结构的扩展模型方程。 它利用了这样一个事实,即这些方程非常接近已被广泛研究的可积方程。光纤电缆在长距离通信中越来越重要。在这种电缆中携带信息的脉冲可以用依赖于介质的数学方程来描述。 这些方程的确切形式通常是未知的。 为了使信息不失真地到达目的地,这些脉冲在沿着光纤传播时保持稳定是至关重要的。 在这项工作中,将开发严格的数学方法来研究这种稳定性。 该方法也将是稳健的介质下的变化,因此将具有广泛的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Todd Kapitula其他文献
Spatial dynamics of time periodic solutions for the Ginzburg-Landau equation
- DOI:
10.1007/bf00916827 - 发表时间:
1996-03-01 - 期刊:
- 影响因子:1.600
- 作者:
Todd Kapitula;Stanislaus Maier-Paape - 通讯作者:
Stanislaus Maier-Paape
Todd Kapitula的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Todd Kapitula', 18)}}的其他基金
RUI: Nonlinear spectral problems in Hamiltonian systems
RUI:哈密顿系统中的非线性谱问题
- 批准号:
1108783 - 财政年份:2011
- 资助金额:
$ 5.72万 - 项目类别:
Standard Grant
RUI: Waves in Hamiltonian Systems with Applications to Bose-Einstein Condensates
RUI:哈密顿系统中的波及其在玻色-爱因斯坦凝聚中的应用
- 批准号:
0806636 - 财政年份:2008
- 资助金额:
$ 5.72万 - 项目类别:
Standard Grant
Waves in Hamiltonian Systems with Applications in Nonlinear Optics and BECs
哈密顿系统中的波及其在非线性光学和 BEC 中的应用
- 批准号:
0304982 - 财政年份:2003
- 资助金额:
$ 5.72万 - 项目类别:
Standard Grant
相似海外基金
NEWWAVE: New methods for analysing travelling waves in discrete systems with applications to neuroscience
NEWWAVE:分析离散系统中行波的新方法及其在神经科学中的应用
- 批准号:
EP/Y027531/1 - 财政年份:2024
- 资助金额:
$ 5.72万 - 项目类别:
Fellowship
Non-contact impedance measurement of cells by dielectrophoretic motion analysis using quasi-travelling waves
通过使用准行波的介电泳运动分析对细胞进行非接触式阻抗测量
- 批准号:
19K04416 - 财政年份:2019
- 资助金额:
$ 5.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterizing epileptic spikes as travelling waves using high-density EEG
使用高密度脑电图将癫痫尖峰表征为行波
- 批准号:
9344711 - 财政年份:2016
- 资助金额:
$ 5.72万 - 项目类别:
Bushfire safety improvements for rural electricity networks using hybrid fault detection incorporating distributed observations of travelling waves
使用结合行波分布式观测的混合故障检测改进农村电网的丛林火灾安全
- 批准号:
LP130100645 - 财政年份:2013
- 资助金额:
$ 5.72万 - 项目类别:
Linkage Projects
Control of travelling and rotating waves in spatially extended nonlinear systems (B06)
空间扩展非线性系统中行波和旋转波的控制(B06)
- 批准号:
193380497 - 财政年份:2011
- 资助金额:
$ 5.72万 - 项目类别:
Collaborative Research Centres
A geometric theory for travelling waves in advection-reaction-diffusion models
平流反应扩散模型中行波的几何理论
- 批准号:
DP110102775 - 财政年份:2011
- 资助金额:
$ 5.72万 - 项目类别:
Discovery Projects
Nanopumps based on high frequency electromagnetic travelling waves: A theoretical and experimental approach to the transport of fluids and particles in microchannels
基于高频电磁行波的纳米泵:微通道中流体和颗粒传输的理论和实验方法
- 批准号:
5425498 - 财政年份:2004
- 资助金额:
$ 5.72万 - 项目类别:
Priority Programmes
Mathematical Sciences: Investigations into Development of Microstructure, Ginzburg-Landau Vortices, and Travelling Waves on Lattics
数学科学:微观结构、金兹堡-朗道涡旋和格子上行波的发展研究
- 批准号:
9501395 - 财政年份:1995
- 资助金额:
$ 5.72万 - 项目类别:
Continuing Grant
Forward and Reverse Travelling Waves in the Cochlea
耳蜗中的正向和反向行波
- 批准号:
9320326 - 财政年份:1994
- 资助金额:
$ 5.72万 - 项目类别:
Continuing grant
Mathematical Sciences: Geometric Approaches to the Stability of Travelling Waves & Other Problems
数学科学:行波稳定性的几何方法
- 批准号:
9100085 - 财政年份:1991
- 资助金额:
$ 5.72万 - 项目类别:
Continuing Grant