Dynamics, Stability and Stochastic Analysis of Astrophysical Systems

天体物理系统的动力学、稳定性和随机分析

基本信息

项目摘要

This proposal seeks to develop several important new techniques and tools to further our understanding of stochastic dynamics and classical orbital dynamics. The specific problems are motivated by several key issues in astrophysics, in particular, the analysis of the dynamics of dark matter halos, galactic bulges, and extra-solar planetary systems. At the same time, this project will undertake new research directions concerning several classic problems of current interest in applied mathematics, including the analysis of the stochastically forced Hill's equation, analysis of the asymptotics of the eigenvalues of random matrices, and the dynamics of particles in non-Newtonian potentials. The proposal consists of three interrelated parts. The first pertains to the analysis of orbital instabilities that arise in the dynamics of test particles in extended mass distributions such as dark matter halos. Our analysis leads to a stochastically forced Hill's equation which can be studied by analyzing infinite products of random matrices. The second part discusses the role of turbulence in extra-solar planetary systems and leads to the study of stochastic pendulum problems. The long term dynamics of these systems can also be described by a discrete map with random parameters. The final part considers the phenomenon of tidal stripping in dark matter halos. This work involves the study of orbits of small halos as they fall into larger ones, including dynamical friction and its effects on orbital dynamics. Here, the overarching goal is to understand the nearly universal form found for the matter density profiles, and in particular how they are affected by smaller halos being assimilated into larger structures.The field of astrophysics has experienced an unprecedented number of observational discoveries and theoretical breakthroughs in the past decade. These discoveries include super-massive black holes in galactic centers, the accelerating universe, measurement of the fluctuations in the cosmic microwave background, extra-solar planets, and brown dwarfs. The observational progress has been made possible through technological innovations, including detectors, telescopes, and spacecraft. Much of the theoretical progress has taken place through numerical simulations, which in turn have benefited from the ever-growing capabilities of computers. Unfortunately, however, the third pillar of this science --- the analytic understanding of these newly discovered astronomical objects and physical phenomena --- is lagging behind. One of the difficulties associated with analytic work in this area is the enormous complexity of the astrophysical systems under study. In particular, chaotic dynamics and sensitive dependence on initial conditions arise in many contexts and render it difficult to make progress through the traditional analytic methods used by astrophysicists. However, the development and application of new mathematical tools, as proposed herein, will facilitate progress on these astrophysical issues, and will be useful in many additional applications. This project will have educational impacts on several fronts, including the training of graduate students, the education of graduates and undergraduates, and reaching out to the general population through public lectures.
该建议旨在开发几种重要的新技术和工具,以进一步了解随机动力学和经典轨道动力学。具体的问题是由天体物理学中的几个关键问题,特别是暗物质晕,银河系凸起,太阳系外行星系统的动力学分析的动机。与此同时,该项目将对应用数学中当前感兴趣的几个经典问题进行新的研究方向,包括随机强迫Hill方程的分析,随机矩阵特征值的渐近分析,以及非牛顿势中的粒子动力学。 该建议由三个相互关联的部分组成。第一个是关于在扩展质量分布的测试粒子动力学中出现的轨道不稳定性的分析,如暗物质晕。 我们的分析导致一个随机强迫希尔方程,可以通过分析随机矩阵的无穷乘积来研究。第二部分讨论了湍流在太阳系外行星系统中的作用,并导致对随机摆问题的研究。这些系统的长期动力学也可以用具有随机参数的离散映射来描述。 最后一部分考虑暗物质晕中的潮汐剥离现象。这项工作涉及研究小晕落入大晕时的轨道,包括动力摩擦及其对轨道动力学的影响。在这里,首要目标是了解物质密度分布的几乎普遍形式,特别是它们如何受到较小的晕被吸收到较大结构中的影响。在过去的十年中,天体物理学领域经历了前所未有的观测发现和理论突破。这些发现包括银河系中心的超大质量黑洞,加速的宇宙,宇宙微波背景波动的测量,太阳系外行星和褐矮星。 通过技术创新,包括探测器,望远镜和航天器,观测进展成为可能。大部分理论进展都是通过数值模拟实现的,而数值模拟又得益于计算机不断增长的能力。 然而,不幸的是,这门科学的第三个支柱---对这些新发现的天体和物理现象的分析理解---却落后了。与这一领域的分析工作有关的困难之一是所研究的天体物理系统的巨大复杂性。特别是,混乱动力学和对初始条件的敏感依赖在许多情况下都会出现,并且很难通过天体物理学家使用的传统分析方法取得进展。然而,新的数学工具的开发和应用,如本文所提出的,将促进这些天体物理问题的进展,并将在许多其他应用中是有用的。 该项目将在若干方面产生教育影响,包括研究生的培训、研究生和本科生的教育以及通过公开讲座向广大民众进行宣传。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anthony Bloch其他文献

On the Geometry of Virtual Nonlinear Nonholonomic Constraints
虚拟非线性非完整约束的几何
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Efstratios Stratoglou;A. Simoes;Anthony Bloch;Leonardo J. Colombo
  • 通讯作者:
    Leonardo J. Colombo
Completeness of Riemannian metrics: an application to the control of constrained mechanical systems
黎曼度量的完备性:约束机械系统控制的应用
  • DOI:
    10.48550/arxiv.2311.14969
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jos'e 'Angel Acosta;Anthony Bloch;David Mart'in de Diego
  • 通讯作者:
    David Mart'in de Diego
On two notions of total positivity for partial flag varieties
关于部分标志品种的完全积极性的两个概念
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Anthony Bloch;Steven Karp
  • 通讯作者:
    Steven Karp
Optimal Control with Obstacle Avoidance for Incompressible Ideal Flows of an Inviscid Fluid
无粘流体不可压缩理想流动的避障最优控制
  • DOI:
    10.48550/arxiv.2311.01774
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Simoes;Anthony Bloch;Leonardo J. Colombo
  • 通讯作者:
    Leonardo J. Colombo
Gradient Flows, Adjoint Orbits, and the Topology of Totally Nonnegative Flag Varieties Anthony M. Bloch & Steven N. Karp
梯度流、伴随轨道和完全非负旗簇的拓扑 Anthony M. Bloch

Anthony Bloch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anthony Bloch', 18)}}的其他基金

Dynamics, Integrability, and Control of Mechanical and Physical Systems
机械和物理系统的动力学、可积性和控制
  • 批准号:
    2103026
  • 财政年份:
    2021
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Standard Grant
Dynamics, Integrability, and Control of Mechanical and Nonholonomic Systems
机械和非完整系统的动力学、可积性和控制
  • 批准号:
    1613819
  • 财政年份:
    2016
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Standard Grant
Dynamics, Integrability and Control of Mechanical and Nonholonomic Systems
机械和非完整系统的动力学、可积性和控制
  • 批准号:
    1207693
  • 财政年份:
    2012
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Standard Grant
Dynamics and Control of Nonholonomic and Quantum Systems
非完整和量子系统的动力学和控制
  • 批准号:
    0907949
  • 财政年份:
    2009
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics, Geometry, and Control of Constrained Mechanical Systems
协作研究:约束机械系统的动力学、几何和控制
  • 批准号:
    0604307
  • 财政年份:
    2006
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics, Stabilization and Control of Nonholonomic Systems
合作研究:非完整系统的动力学、稳定性和控制
  • 批准号:
    0305837
  • 财政年份:
    2003
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Standard Grant
Dynamics and Control of Mechanical Systems
机械系统动力学与控制
  • 批准号:
    0103895
  • 财政年份:
    2001
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Standard Grant
Dynamics and Control of Mechanical Systems
机械系统动力学与控制
  • 批准号:
    9803181
  • 财政年份:
    1998
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
  • 批准号:
    9496221
  • 财政年份:
    1994
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
  • 批准号:
    9157556
  • 财政年份:
    1991
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Continuing Grant

相似国自然基金

随机激励下多稳态系统的临界过渡识别及Basin Stability分析
  • 批准号:
    11872305
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Parametric Resonance and Stochastic Dynamic Stability of Structures: Theory, Experiments, and Applications
结构的参数共振和随机动态稳定性:理论、实验和应用
  • 批准号:
    RGPIN-2019-06069
  • 财政年份:
    2022
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Discovery Grants Program - Individual
Stability for Markov Chain Monte Carlo Inference with Applications in Robust Stochastic Control
马尔可夫链蒙特卡罗推理的稳定性及其在鲁棒随机控制中的应用
  • 批准号:
    535321-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Temporal-Spatial Data Analytics for Stochastic Power System Stability
随机电力系统稳定性的时空数据分析
  • 批准号:
    DE220101277
  • 财政年份:
    2022
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Discovery Early Career Researcher Award
Stability for Markov Chain Monte Carlo Inference with Applications in Robust Stochastic Control
马尔可夫链蒙特卡罗推理的稳定性及其在鲁棒随机控制中的应用
  • 批准号:
    535321-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Parametric Resonance and Stochastic Dynamic Stability of Structures: Theory, Experiments, and Applications
结构的参数共振和随机动态稳定性:理论、实验和应用
  • 批准号:
    RGPIN-2019-06069
  • 财政年份:
    2021
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Discovery Grants Program - Individual
Stability for Markov Chain Monte Carlo Inference with Applications in Robust Stochastic Control
马尔可夫链蒙特卡罗推理的稳定性及其在鲁棒随机控制中的应用
  • 批准号:
    535321-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Parametric Resonance and Stochastic Dynamic Stability of Structures: Theory, Experiments, and Applications
结构的参数共振和随机动态稳定性:理论、实验和应用
  • 批准号:
    RGPIN-2019-06069
  • 财政年份:
    2020
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Discovery Grants Program - Individual
Parametric Resonance and Stochastic Dynamic Stability of Structures: Theory, Experiments, and Applications
结构的参数共振和随机动态稳定性:理论、实验和应用
  • 批准号:
    RGPIN-2019-06069
  • 财政年份:
    2019
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Discovery Grants Program - Individual
Stability for Markov Chain Monte Carlo Inference with Applications in Robust Stochastic Control
马尔可夫链蒙特卡罗推理的稳定性及其在鲁棒随机控制中的应用
  • 批准号:
    535321-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Stability of Non-Linear Filters in Stochastic Control
随机控制中非线性滤波器的稳定性
  • 批准号:
    528676-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了