Dynamics, Integrability, and Control of Mechanical and Nonholonomic Systems

机械和非完整系统的动力学、可积性和控制

基本信息

项目摘要

The project focuses on problems in mechanics, dynamics, and control. The theory of nonholonomic dynamics is the study of mechanical systems subject to constraints on velocities, such as rolling without slipping. Examples where we use this theory in practical systems include wheeled vehicles, such as cars (in particular self-steering cars) and robots. The mathematics behind the control of nonholonomic systems plays a key role in control of mechanical systems in general, such as the control of aircraft. Also important is how dissipation, or friction, affects the behavior and stability of such systems. This research project explores how to explicitly solve for the dynamics to predict the behavior of such mechanical systems. The methods under development are expected also to be useful in studying quantum control problems, with applications to quantum computing among others. The project involves graduate and undergraduate students in the research. This research project aims to broaden and deepen understanding of the geometry, dynamics, and control of mechanical systems including Hamiltonian and Lagrangian systems, integrable systems, nonholonomic systems, and gradient flows. The investigator will study the dynamics of various mechanical systems including integrable Hamiltonian systems in finite and infinite dimensions, coupled Hamiltonian and gradient systems, systems with nonholonomic constraints, optimal control equations on manifolds, and quantum control systems. The research will consider the geometry of integrable systems in several new contexts, including extensions of the Toda lattice flow and rigid body flows, as well as applications to optimal control of certain systems on Lie groups. It is expected that similar methods can be used to study the control and dynamics of open quantum systems that involve coupled Hamiltonian and dissipative dynamics.
该项目重点关注力学、动力学和控制方面的问题。非完整动力学理论是研究受速度约束的力学系统,如无滑动的滚动。我们在实际系统中使用这一理论的例子包括轮式车辆,如汽车(特别是自转向汽车)和机器人。非完整系统控制背后的数学在一般机械系统的控制中起着关键作用,例如飞机的控制。同样重要的是耗散或摩擦如何影响这种系统的行为和稳定性。本研究项目探讨如何明确解决动态预测这样的机械系统的行为。正在开发的方法预计也将有助于研究量子控制问题,并应用于量子计算等。该项目涉及研究生和本科生的研究。该研究项目旨在拓宽和加深对力学系统的几何,动力学和控制的理解,包括哈密顿和拉格朗日系统,可积系统,非完整系统和梯度流。研究人员将研究各种力学系统的动力学,包括有限维和无限维的可积哈密顿系统,耦合哈密顿和梯度系统,非完整约束系统,流形上的最优控制方程和量子控制系统。该研究将考虑几何可积系统在几个新的背景下,包括扩展的户田格流和刚体流,以及应用程序的李群某些系统的最优控制。人们期望类似的方法可以用于研究涉及耦合哈密顿和耗散动力学的开放量子系统的控制和动力学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anthony Bloch其他文献

On the Geometry of Virtual Nonlinear Nonholonomic Constraints
虚拟非线性非完整约束的几何
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Efstratios Stratoglou;A. Simoes;Anthony Bloch;Leonardo J. Colombo
  • 通讯作者:
    Leonardo J. Colombo
Completeness of Riemannian metrics: an application to the control of constrained mechanical systems
黎曼度量的完备性:约束机械系统控制的应用
  • DOI:
    10.48550/arxiv.2311.14969
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jos'e 'Angel Acosta;Anthony Bloch;David Mart'in de Diego
  • 通讯作者:
    David Mart'in de Diego
On two notions of total positivity for partial flag varieties
关于部分标志品种的完全积极性的两个概念
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Anthony Bloch;Steven Karp
  • 通讯作者:
    Steven Karp
Optimal Control with Obstacle Avoidance for Incompressible Ideal Flows of an Inviscid Fluid
无粘流体不可压缩理想流动的避障最优控制
  • DOI:
    10.48550/arxiv.2311.01774
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Simoes;Anthony Bloch;Leonardo J. Colombo
  • 通讯作者:
    Leonardo J. Colombo
Gradient Flows, Adjoint Orbits, and the Topology of Totally Nonnegative Flag Varieties Anthony M. Bloch & Steven N. Karp
梯度流、伴随轨道和完全非负旗簇的拓扑 Anthony M. Bloch

Anthony Bloch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anthony Bloch', 18)}}的其他基金

Dynamics, Integrability, and Control of Mechanical and Physical Systems
机械和物理系统的动力学、可积性和控制
  • 批准号:
    2103026
  • 财政年份:
    2021
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Standard Grant
Dynamics, Integrability and Control of Mechanical and Nonholonomic Systems
机械和非完整系统的动力学、可积性和控制
  • 批准号:
    1207693
  • 财政年份:
    2012
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Standard Grant
Dynamics and Control of Nonholonomic and Quantum Systems
非完整和量子系统的动力学和控制
  • 批准号:
    0907949
  • 财政年份:
    2009
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Standard Grant
Dynamics, Stability and Stochastic Analysis of Astrophysical Systems
天体物理系统的动力学、稳定性和随机分析
  • 批准号:
    0806756
  • 财政年份:
    2008
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics, Geometry, and Control of Constrained Mechanical Systems
协作研究:约束机械系统的动力学、几何和控制
  • 批准号:
    0604307
  • 财政年份:
    2006
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics, Stabilization and Control of Nonholonomic Systems
合作研究:非完整系统的动力学、稳定性和控制
  • 批准号:
    0305837
  • 财政年份:
    2003
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Standard Grant
Dynamics and Control of Mechanical Systems
机械系统动力学与控制
  • 批准号:
    0103895
  • 财政年份:
    2001
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Standard Grant
Dynamics and Control of Mechanical Systems
机械系统动力学与控制
  • 批准号:
    9803181
  • 财政年份:
    1998
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
  • 批准号:
    9496221
  • 财政年份:
    1994
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
  • 批准号:
    9157556
  • 财政年份:
    1991
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Continuing Grant

相似海外基金

Lagrangian Multiforms for Symmetries and Integrability: Classification, Geometry, and Applications
对称性和可积性的拉格朗日多重形式:分类、几何和应用
  • 批准号:
    EP/Y006712/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Fellowship
Angular Cherednik Algebras and Integrability
Angular Cherednik 代数和可积性
  • 批准号:
    EP/W013053/1
  • 财政年份:
    2023
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Research Grant
Geometry and Integrability of Random Processes
随机过程的几何和可积性
  • 批准号:
    2346685
  • 财政年份:
    2023
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Standard Grant
Global behavior of discrete surfaces via integrability
通过可积性实现离散曲面的全局行为
  • 批准号:
    23K03091
  • 财政年份:
    2023
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
problem of integrability in the context of the AdS/CFT correspondence
AdS/CFT 对应关系中的可积性问题
  • 批准号:
    2816508
  • 财政年份:
    2023
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Studentship
Extending the geometric theory of discrete Painleve equations - singularities, entropy and integrability
扩展离散 Painleve 方程的几何理论 - 奇点、熵和可积性
  • 批准号:
    22KF0073
  • 财政年份:
    2023
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Quantum Integrability
量子可积性
  • 批准号:
    2310594
  • 财政年份:
    2023
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Standard Grant
symmetry and integrability of ADE matrix model probing critical phenomena of supersymmetric gauge theory by symmetry and integrability
ADE 矩阵模型的对称性和可积性 通过对称性和可积性探讨超对称规范理论的关键现象
  • 批准号:
    23K03394
  • 财政年份:
    2023
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear systems: algebraic structures and integrability
非线性系统:代数结构和可积性
  • 批准号:
    EP/X018784/1
  • 财政年份:
    2023
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Research Grant
Integrability of nonlinear partial difference and functional equations: a singularity and entropy based approach
非线性偏差和函数方程的可积性:基于奇点和熵的方法
  • 批准号:
    22H01130
  • 财政年份:
    2022
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了