Collaborative Research: Time-Dependent and Inhomogeneous Flows of Entangled Polymeric and Micellar Networks

合作研究:缠结聚合物和胶束网络的时间依赖性和不均匀流动

基本信息

  • 批准号:
    0807330
  • 负责人:
  • 金额:
    $ 13.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

CookDMS-0807395McKinleyDMS-0807330 In this collaborative project, the investigators and acolleague study the motion of complex fluids, especially flows ofwormlike micellar fluids and of monodisperse polymer solutions ina variety of geometries and under a variety of forcings. Surfactant systems consist of amphiphilic molecules withhydrophilic heads and hydrophobic tails. Under suitable chemicalconditions these molecules can self-assemble in aqueous solutioninto long aggregates known as worm-like micelles. These longflexible structures entangle to form a network and lead toviscoelastic properties similar to those of polymer melts andconcentrated solutions, but with the added complexity that theworms continuously break and reform (i.e. they are "livingpolymers"). External deformations can enhance the local rate ofmicellar breakage, thus the macroscopic flow affects themicroscopic structure which in turn further modifies the globalvelocity field. Due to these multi-scale interactions thesefluids exhibit flow inhomogeneities even in simple geometries. Development and analysis of new constitutive models andcomparison with experimental results is generating new insightand understanding into the multi-scale nature of these flows andof the influence of the evolution in the microscopic structure onthe macroscopic measurables. The governing mathematics is thatof a nonlinear system of partial differential equationsdescribing conservation of mass and linear momentum, coupled toequations governing the number densities of the entangledmolecules and constitutive (stress) equations for each species. Specifically, the investigators study a pair of two-speciesnetwork models that they recently proposed: a two species modelwith chain scission and reforming effects (the VCM model)physically appropriate for wormlike micellar solutions, and asimplified non-interacting model (PEC+M model) appropriate tomonodisperse entangled polymer solutions. The investigatorsstudy the time evolution of the solutions in strong extensionalflow and in rapidly time-varying flow using a combination ofasymptotics and computation as well as experiments. Approximateclosed form solutions are generated to enable an understanding ofthe flows and of sharp spatial transitions (microstructuralboundary layers). The investigators study the material properties of complexfluids such as those constituting shampoos, liquid detergents,molten plastics, and fluids utilized in enhanced oil recovery. On the microscopic scale these polymeric fluids consist of largeaggregates or macromolecules and the shape and orientation ofthese molecules control the properties of the fluid and how itperforms in the desired application. It is very difficult tocharacterize these fluids experimentally because their flowproperties, unlike those of Newtonian fluids such as water,become inhomogeneous even in simple geometries. This means thatthe usual types of measurements (in which the fluid propertiesare measured at the flow boundaries) are not sufficient tounderstand and characterize the material response. Theinvestigators have formulated a new equation of state -- amathematical model -- that more fully describes themicrostructural properties of these fluids and how they flow. They now investigate the predictions of this model in variouscomplex flows and compare this with experimental findings. Thisin turn enables them to develop new means to probe andcharacterize the properties of the fluids. The complex fluidslisted above are used commercially in a variety of geometriesthat may involve both stretching flows (such as the motion of ajet, flow out of a nozzle) as well as shearing flows (for examplepumping of the fluids in a pipe). To ensure that theiranalytical and experimental results are relevant to researchersin industry, the investigators investigate both steady andtime-dependent examples of both types of flow conditions.
CookDMS-0807395 McKinleyDMS-0807330 在这个合作项目中,研究人员和同事研究复杂流体的运动,特别是蠕虫状胶束流体和单分散聚合物溶液在各种几何形状和各种作用力下的流动。表面活性剂体系由具有亲水性头部和疏水性尾部的两亲性分子组成。 在合适的化学条件下,这些分子可以在水溶液中自组装成长聚集体,称为蠕虫状胶束。 这些长而柔韧的结构缠结在一起形成一个网络,并导致类似于聚合物熔体和浓溶液的粘弹性,但增加了蠕虫不断破裂和改革的复杂性(即它们是“活聚合物”)。 外部变形可以提高胶束的局部破碎速率,从而宏观流动影响微观结构,进而进一步改变全局速度场。 由于这些多尺度的相互作用,这些流体即使在简单的几何形状中也表现出流动的不均匀性.新的本构模型的开发和分析以及与实验结果的比较正在产生对这些流动的多尺度性质以及微观结构演化对宏观可测量性的影响的新的见解和理解。 控制数学是描述质量和线性动量守恒的偏微分方程的非线性系统,耦合到控制纠缠分子的数量密度的方程和每个物种的本构(应力)方程。具体而言,研究人员研究了他们最近提出的一对两种网络模型:具有断链和重整效应的两种模型(VCM模型)物理上适用于蠕虫状胶束溶液,简化的非相互作用模型(PEC+M模型)适用于单分散缠结聚合物溶液。 该算法结合渐近性、计算和实验研究了强延拓流和快时变流中解的时间演化。 近似封闭形式的解决方案产生,使流动和尖锐的空间过渡(微观结构边界层)的理解。 研究人员研究复杂流体的材料特性,如洗发水、液体洗涤剂、熔融塑料和用于提高石油采收率的流体。在微观尺度上,这些聚合物流体由大的聚集体或大分子组成,这些分子的形状和取向控制着流体的性质以及它在所需应用中的表现. 这是非常困难的实验表征这些流体,因为它们的流动特性,不像那些牛顿流体,如水,变得不均匀,即使在简单的几何形状。 这意味着通常类型的测量(在流动边界处测量流体性质)不足以理解和表征材料响应。 研究人员已经制定了一个新的状态方程-数学模型-更全面地描述了这些流体的微观结构特性和它们如何流动。他们现在研究这个模型在各种复杂流动中的预测,并将其与实验结果进行比较。 这反过来又使他们能够开发新的手段来探测和表征流体的性质。 上面列出的复杂流体在商业上以各种几何形状使用,可能涉及拉伸流(如射流的运动,流出喷嘴)以及剪切流(例如管道中流体的泵送)。 为了确保他们的分析和实验结果与工业研究人员相关,研究人员调查了两种类型的流动条件的稳定和时间依赖的例子。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gareth McKinley其他文献

Slippage and migration in Taylor–Couette flow of a model for dilute wormlike micellar solutions
  • DOI:
    10.1016/j.jnnfm.2006.02.012
  • 发表时间:
    2006-07-15
  • 期刊:
  • 影响因子:
  • 作者:
    Louis F. Rossi;Gareth McKinley;L.Pamela Cook
  • 通讯作者:
    L.Pamela Cook

Gareth McKinley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gareth McKinley', 18)}}的其他基金

Collaborative Research: Unraveling the Spatiotemporal Dynamics of Inertio-Elastic Turbulence using Measurements and Data-Infused Simulations
合作研究:利用测量和数据注入模拟揭示惯性弹性湍流的时空动力学
  • 批准号:
    2027870
  • 财政年份:
    2020
  • 资助金额:
    $ 13.73万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER Proposal on Non-Homogeneous Flow Fields in Nonlinear Rheology: A Challenge to Current Paradigms?
合作研究:关于非线性流变学中非均匀流场的迫切建议:对当前范式的挑战?
  • 批准号:
    0934312
  • 财政年份:
    2009
  • 资助金额:
    $ 13.73万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Theoretical and Experimental Analysis of Wormlike Micellar and Polymeric Fluids
合作提案:蠕虫状胶束和聚合物流体的理论和实验分析
  • 批准号:
    0406590
  • 财政年份:
    2004
  • 资助金额:
    $ 13.73万
  • 项目类别:
    Standard Grant
Acquisition of Imaging Instrumentation for the Hatsopoulos Microfluids Laboratory
为 Hatsopoulos 微流体实验室购置成像仪器
  • 批准号:
    0116486
  • 财政年份:
    2001
  • 资助金额:
    $ 13.73万
  • 项目类别:
    Standard Grant
Presidential Faculty Fellows Awards
总统教职研究员奖
  • 批准号:
    9553216
  • 财政年份:
    1995
  • 资助金额:
    $ 13.73万
  • 项目类别:
    Continuing Grant
NSF Young Investigator
NSF 青年研究员
  • 批准号:
    9358469
  • 财政年份:
    1993
  • 资助金额:
    $ 13.73万
  • 项目类别:
    Continuing Grant
Research Initiation Award: Investigation of Viscoelastic Flow Instabilities by Digital Particle Image Velocimetry
研究启动奖:通过数字粒子图像测速研究粘弹性流动不稳定性
  • 批准号:
    9209779
  • 财政年份:
    1992
  • 资助金额:
    $ 13.73万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Time-Sharing Experiments for the Social Sciences (TESS): Proposal for Renewed Support, 2020-2023
合作研究:社会科学分时实验(TESS):2020-2023 年更新支持提案
  • 批准号:
    2424057
  • 财政年份:
    2024
  • 资助金额:
    $ 13.73万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
  • 批准号:
    2330759
  • 财政年份:
    2024
  • 资助金额:
    $ 13.73万
  • 项目类别:
    Standard Grant
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
  • 批准号:
    2330760
  • 财政年份:
    2024
  • 资助金额:
    $ 13.73万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
  • 批准号:
    2312978
  • 财政年份:
    2023
  • 资助金额:
    $ 13.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimized frequency-domain analysis for astronomical time series
合作研究:天文时间序列的优化频域分析
  • 批准号:
    2307979
  • 财政年份:
    2023
  • 资助金额:
    $ 13.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Plant-Inspired Growing Robots Operating in Multiple Time Scales
协作研究:在多个时间尺度上运行的植物启发种植机器人
  • 批准号:
    2312423
  • 财政年份:
    2023
  • 资助金额:
    $ 13.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring the Kermadec Trench --- Residence time, spatial gradients, and insights into ventilation
合作研究:探索克马德克海沟——停留时间、空间梯度和通风见解
  • 批准号:
    2319547
  • 财政年份:
    2023
  • 资助金额:
    $ 13.73万
  • 项目类别:
    Continuing Grant
Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
  • 批准号:
    2309728
  • 财政年份:
    2023
  • 资助金额:
    $ 13.73万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: AI-Assisted Just-in-Time Scaffolding Framework for Exploring Modern Computer Design
合作研究:EAGER:用于探索现代计算机设计的人工智能辅助即时脚手架框架
  • 批准号:
    2327971
  • 财政年份:
    2023
  • 资助金额:
    $ 13.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Coordinating Offline Resource Allocation Decisions and Real-Time Operational Policies in Online Retail with Performance Guarantees
协作研究:在绩效保证下协调在线零售中的线下资源分配决策和实时运营策略
  • 批准号:
    2226901
  • 财政年份:
    2023
  • 资助金额:
    $ 13.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了