Collaborative Research: Plant-Inspired Growing Robots Operating in Multiple Time Scales

协作研究:在多个时间尺度上运行的植物启发种植机器人

基本信息

  • 批准号:
    2312423
  • 负责人:
  • 金额:
    $ 33.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

This award supports fundamental research to create plant-inspired robots for long-duration monitoring missions in congested and dynamically evolving environments. Such environments abound in our world, for example, urban shopping districts, tropical forests, underwater reefs, and undeveloped islands. These locations are typically inaccessible and resource-limited for human operations, and they evolve slowly but substantially over time (e.g., propagating vegetation). However, “being right there” in these environments and responding to events at multiple time scales is critical, especially for environmental protection. Therefore, in this project plant-inspired robots will be designed to monitor and react to long-term processes like pollution spread, humidity levels, and seasonal migration of animal groups, as well as randomly occurring real-time events like pollution outbreaks, forest fires, and sightings of rare animals. To this end, the research team will abstract different capacities of plants—their distributed movements from slow to ballistic speed, adaptation according to ambient conditions, and energy harvesting processes—to establish new approaches toward robotic structure, motion, and functionality. On the education and outreach front, the award will support curriculum development in bio-inspired robotics, participation of undergraduate students in research, and outreach activities for middle school girls.The objective of this research is to enable development of plant-inspired robots capable of long-duration service in complex, dynamic environments by pursuing significant innovations in structural, energetic, and operational designs of robots, e.g., robotic hardware that mimics plant-like “growth” and adaptation; advancement in robotic movements to cover both real-time events (seconds/minutes) and long-term processes (weeks/months); and energy harvesting components for long-duration autonomy. The research team will achieve the objective by: (1) leveraging origami principles to create robotic “trunk” components capable of discrete and energy efficient growth-like deformations via folding and self-locking; (2) using principles from continuum robots to devise “leaf” and “needle” components capable of continuous and short-duration motions for monitoring and manipulating the ambient environment; (3) laying down the foundation for energy autonomy by exploring diverse energy harvesting approaches similar to those that plants employ; and (4) integration to enable multiple time-scale operations. Finally, this new concept of plant-inspired growing robots will be validated and evaluated via fully functional prototypes applied to campus pedestrian traffic and natural habitat monitoring in long-duration outdoor demonstrations.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持基础研究,以创建植物启发的机器人,用于在拥挤和动态变化的环境中执行长期监测任务。这样的环境在我们的世界中比比皆是,例如,城市购物区,热带森林,水下珊瑚礁和未开发的岛屿。这些位置对于人类操作来说通常是不可访问的并且资源有限,并且它们随着时间的推移缓慢但实质性地演变(例如,繁殖植物)。然而,在这些环境中“就在那里”并在多个时间尺度上对事件作出反应是至关重要的,特别是对于环境保护来说。因此,在这个项目中,植物启发的机器人将被设计用于监测和应对长期过程,如污染扩散,湿度水平和动物群体的季节性迁移,以及随机发生的实时事件,如污染爆发,森林火灾和稀有动物的目击。为此,研究团队将抽象植物的不同能力--它们从慢速到弹道速度的分布式运动、根据环境条件的适应以及能量收集过程--以建立机器人结构、运动和功能的新方法。在教育和推广方面,该奖项将支持生物启发机器人的课程开发,本科生参与研究,以及中学女生的推广活动。该研究的目标是通过在机器人的结构,能量和操作设计方面进行重大创新,开发能够在复杂,动态环境中长期服务的植物启发机器人,例如,机器人硬件模仿植物般的“生长”和适应;机器人运动的进步,以涵盖实时事件(秒/分钟)和长期过程(周/月);以及用于长期自主的能量收集组件。研究小组将透过以下方法达致目标:(1)利用折纸原理,创造机器人“躯干”组件,透过折叠和自锁,使其能以不连续和具能源效益的方式变形;(2)利用连续体机器人的原理,设计“叶子”和“针”组件,使其能以持续和短时间的方式运动,以监测和操控周围环境;(3)通过探索与工厂采用的方法类似的多种能量收集方法,为能源自主奠定基础;以及(4)集成以实现多个时间尺度的操作。最后,这种植物启发的生长机器人的新概念将通过全功能原型进行验证和评估,这些原型将应用于校园行人交通和自然栖息地监测,并在长时间的户外演示中进行。该项目得到跨部门机器人基础研究计划的支持,由工程局(ENG)和计算机与信息科学与工程局(CISE)共同管理和资助该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ian Walker其他文献

What do we know about bicycle helmets
关于自行车头盔我们了解多少
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. P. Bogerd;P. Halldin;M. Houtenbos;D. Otte;Ian Walker;R. Willinger;D. Shinar
  • 通讯作者:
    D. Shinar
Correction to: Assessing the impact of hurricane Fiona on the coast of PEI National Park and implications for the effectiveness of beach-dune management policies
  • DOI:
    10.1007/s11852-024-01052-3
  • 发表时间:
    2024-06-06
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Robin Davidson-Arnott;Jeff Ollerhead;Elizabeth George;Chris Houser;Bernard Bauer;Patrick Hesp;Ian Walker;Irene Delagado-Fernandez;Danika van Proosdij
  • 通讯作者:
    Danika van Proosdij
Determination of the Strong Coupling Constantfrom Jet Rates in Deep Inelastic ScatteringH
深部非弹性散射中喷射速率强耦合常数的测定H
  • DOI:
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Ahmed;S. Aid;A. Akhundov;V. Andreev;B. Andrieu;R. Appuhn;M. Arpagaus;A. Babaev;J. Baehr;J. Ban;P. Baranov;E. Barrelet;W. Bartel;M. Barth;U. Bassler;H. Beck;H. Behrend;A. Belousov;C. Berger;H. Bergstein;G. Bernardi;R. Bernet;G. Bertrand;M. Besançon;R. Beyer;J. Bizot;V. Blobel;K. Borras;F. Botterweck;V. Boudry;A. Braemer;F. Brasse;W. Braunschweig;V. Brisson;D. Bruncko;C. Brune;R. Buchholz;L. Buengener;J. Buerger;F. W. Bsser;A. Buniatian;S. Burke;M. Burton;G. Buschhorn;A. Campbell;T. Carli;F. Charles;D. Clarke;A. B. Clegg;B. Clerbaux;M. Colombo;J. G. Contreras;C. Cormack;J. Coughlan;A. Courau;C. Coutures;G. Cozzika;L. Criegee;D. Cussans;J. Cvach;S. Dagoret;J. Dainton;M. Danilov;W. Dau;K. Daum;M. David;E. Deffur;B. Delcourt;L. Buono;A. Roeck;E. Wolf;P. Nezza;C. Dollfus;J. Dowell;H. Dreis;A. Droutskoi;J. Duboc;D. Dllmann;O. Dnger;H. Duhm;J. Ebert;T. Ebert;G. Eckerlin;V. Efremenko;S. Egli;H. Erlichmann;S. Eichenberger;R. Eichler;F. Eisele;E. Eisenhandler;R. Ellison;E. Elsen;M. Erdmann;W. Erdmann;E. Evrard;L. Favart;A. Fedotov;D. Feeken;R. Felst;J. Feltesse;J. Ferencei;F. Ferrarotto;K. Flamm;M. Fleischer;M. Flieser;G. Flgge;A. Fomenko;B. Fominykh;M. Forbush;J. Formnek;J. Foster;G. Franke;E. Fretwurst;E. Gabathuler;K. Gabathuler;K. Gamerdinger;J. Garvey;J. Gayler;M. Gebauer;A. Gellrich;H. Genzel;R. Gerhards;U. Goerlach;L. Grlich;N. Gogitidze;M. Goldberg;D. Goldner;B. González;I. Gorelov;P. Goritchev;C. Grab;H. Grssler;R. Grssler;T. Greenshaw;G. Grindhammer;A. Gruber;C. Gruber;J. Haack;D. Haidt;L. Hajduk;O. Hamon;M. Hampel;E. Hanlon;M. Hapke;W. Haynes;J. Heatherington;G. Heinzelmann;R. Henderson;H. Henschel;I. Herynek;M. Heß;W. Hildesheim;P. Hill;K. Hiller;C. D. Hilton;J. Hladký;K. Hoeger;M. Hppner;R. Horisberger;V. L. Hudgson;P. Huet;M. Htte;H. Hufnagel;M. Ibbotson;H. Itterbeck;M. Jabiol;A. Jachołkowska;C. Jacobsson;M. Jaffré;J. Janoth;T. Jansen;L. Jnsson;K. Johannsen;D. Johnson;L. Johnson;H. Jung;P. Kalmus;D. Kant;R. Kaschowitz;P. Kasselmann;U. Kathage;J. Katzy;H. Kaufmann;S. Kazarian;I. Kenyon;S. Kermiche;C. Keuker;C. Kiesling;M. Klein;C. Kleinwort;G. Knies;W. Ko;T. Khler;J. Khne;H. Kolanoski;F. Kole;S. Kolya;V. Korbel;M. Korn;P. Kostka;S. Kotelnikov;T. Krmerkmper;M. Krasny;H. Krehbiel;D. Krcker;U. Krger;U. Krner;J. Kubenka;H. Kster;M. Kuhlen;T. Kurca;J. Kurzhfer;B. Kuznik;D. Lacour;F. Lamarche;R. Lander;M. Landon;W. Lange;P. Lanius;J. Laporte;A. Lebedev;C. Leverenz;S. Levonian;C. Ley;A. Lindner;G. Lindstrm;F. Linsel;J. Lipinski;B. List;P. Loch;H. Lohmander;G. Lpez;V. Lubimov;D. Lke;N. Magnussen;E. Malinovskii;S. Mani;R. Maraček;P. Marage;J. Marks;R. Marshall;J. Martens;R. Martin;H. Martyn;J. Martyniak;S. Masson;A. Mavroidis;S. Maxfield;S. McMahon;A. Mehta;K. Meier;D. Mercer;T. Merz;C. Meyer;H. Meyer;J. Meyer;S. Mikocki;D. Milstead;F. Moreau;J. Morris;E. Mroczko;G. Mller;K. Mller;P. Murn;V. Nagovitsin;R. Nahnhauer;B. Naroska;T. Naumann;P. Newman;D. Newton;D. Neyret;H. Nguyen;T. Nicholls;F. Niebergall;C. Niebuhr;R. Nisius;G. Nowak;G. Noyes;M. Nyberg;M. Oakden;H. Oberlack;U. Obrock;J. Olsson;E. Panaro;A. Panitch;C. Pascaud;G. Patel;E. Peppel;E. Prez;J. Phillips;C. Pichler;D. Pitzl;G. Pope;S. Prell;R. Prosi;G. Rdel;F. Raupach;P. Reimer;S. Reinshagen;P. Ribarics;H. Rick;V. Riech;J. Riedlberger;S. Riess;M. Rietz;E. Rizvi;S. Robertson;P. Robmann;H. Roloff;R. Roosen;K. Rosenbauer;A. Rostovtsev;F. Rouse;C. Royon;K. Rter;S. Rusakov;K. Rybicki;R. Ryłko;N. Sahlmann;E. Snchez;D. Sankey;M. Savitsky;P. Schacht;S. Schiek;P. Schleper;W. Schlippe;C. Schmidt;Daniel F. Schmidt;G. Schmidt;A. Schning;V. Schrder;E. Schuhmann;B. Schwab;A. Schwind;U. Seehausen;F. Sefkow;M. Seidel;R. Sell;A. Semenov;V. Shekelyan;I. Shevyakov;H. Shooshtari;L. Shtarkov;G. Siegmon;U. Siewert;Y. Sirois;I. Skillicorn;P. Smirnov;J. R. Smith;Yu.V. Solovev;J. Spiekermann;H. Spitzer;R. Starosta;M. Steenbock;P. Steffen;R. Steinberg;B. Stella;K. Stephens;J. Stier;J. Stiewe;U. Stsslein;J. Strachota;U. Straumann;W. Struczinski;J. Sutton;S. Tapprogge;R. Taylor;V. Chernyshov;C. Thiebaux;G. Thompson;P. Trul;J. Turnau;J. Tutas;P. Uelkes;A. Usik;S. Valkr;A. Valkrov;C. Vallée;P. Esch;P. Mechelen;A. Vartapetian;Y. Vazdik;M. Vecko;P. Verrecchia;G. Villet;K. Wacker;A. Wagener;M. Wagener;Ian Walker;A. Walther;G. Weber;M. Weber;D. Wegener;A. Wegner;H. Wellisch;L. R. West;S. Willard;M. Winde;G. Winter;A. Wright;E. Wnsch;N. Wulff;T. Yiou;J. Zcek;D. Zarbock;Zhiqin Zhang;A. Zhokin;M. Zimmer;W. Zimmermann;F. Zomer;K. Zuber
  • 通讯作者:
    K. Zuber
Using affective judgement to increase physical activity in British adults
利用情感判断来增加英国成年人的身体活动
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    A. Forster;Penny Buykx;N. Martin;S. Sadler;B. Southgate;Lauren Rockliffe;Ian Walker
  • 通讯作者:
    Ian Walker
Site-directed mutagenesis of dienelactone hydrolase produces dienelactone isomerase
二烯内酯水解酶的定点诱变产生二烯内酯异构酶
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ian Walker;C. Easton;D. Ollis
  • 通讯作者:
    D. Ollis

Ian Walker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ian Walker', 18)}}的其他基金

Collaborative Research: HCC: Small: Robot-Rooms: Giving Form to Domestic Activity, On the Go
合作研究:HCC:小型:机器人房间:为旅途中的家庭活动提供形式
  • 批准号:
    2221126
  • 财政年份:
    2022
  • 资助金额:
    $ 33.93万
  • 项目类别:
    Standard Grant
NRI: FND: 3D Concrete Printing with Macro-Micro Robots
NRI:FND:使用宏观-微观机器人进行 3D 混凝土打印
  • 批准号:
    1924721
  • 财政年份:
    2019
  • 资助金额:
    $ 33.93万
  • 项目类别:
    Standard Grant
The Long Term Legacy of School Choice
择校的长期遗产
  • 批准号:
    ES/R003629/1
  • 财政年份:
    2018
  • 资助金额:
    $ 33.93万
  • 项目类别:
    Research Grant
RI: Small: Collaborative Research: A Modular Approach to Robot Systems Incorporating Compliant and Soft Elements
RI:小型:协作研究:结合合规和软元件的机器人系统模块化方法
  • 批准号:
    1718075
  • 财政年份:
    2017
  • 资助金额:
    $ 33.93万
  • 项目类别:
    Standard Grant
RI: Small: Vine-Like Continuum Robots
RI:小型:藤蔓状连续体机器人
  • 批准号:
    1527165
  • 财政年份:
    2015
  • 资助金额:
    $ 33.93万
  • 项目类别:
    Standard Grant
TUES Type 1: Robots in Business and Society - A Hands-on Learning Experience
TUES 类型 1:商业和社会中的机器人 - 实践学习体验
  • 批准号:
    1245250
  • 财政年份:
    2013
  • 资助金额:
    $ 33.93万
  • 项目类别:
    Standard Grant
II-NEW: Robot Arms for Interactive Perception of Highly Non-Rigid Objects
II-新:用于高度非刚性物体交互式感知的机器人手臂
  • 批准号:
    1305267
  • 财政年份:
    2013
  • 资助金额:
    $ 33.93万
  • 项目类别:
    Standard Grant
Cold Related Deaths and the Effect of Nudging the Elderly: Evidence from the Longitudinal Studies
与寒冷相关的死亡和轻推老年人的效果:来自纵向研究的证据
  • 批准号:
    ES/K004298/1
  • 财政年份:
    2012
  • 资助金额:
    $ 33.93万
  • 项目类别:
    Research Grant
RI: Small: Interactive Perception for Manipulating Non-Rigid Objects
RI:小:操纵非刚性物体的交互式感知
  • 批准号:
    1017007
  • 财政年份:
    2010
  • 资助金额:
    $ 33.93万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research: Real-Time Continuum Manipulation
RI:媒介:协作研究:实时连续操纵
  • 批准号:
    0904116
  • 财政年份:
    2009
  • 资助金额:
    $ 33.93万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
  • 批准号:
    2426560
  • 财政年份:
    2024
  • 资助金额:
    $ 33.93万
  • 项目类别:
    Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337427
  • 财政年份:
    2024
  • 资助金额:
    $ 33.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Protein engineering and processing of plant viral templates for controlled nanoparticle synthesis
合作研究:用于受控纳米颗粒合成的植物病毒模板的蛋白质工程和加工
  • 批准号:
    2426065
  • 财政年份:
    2024
  • 资助金额:
    $ 33.93万
  • 项目类别:
    Continuing Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337426
  • 财政年份:
    2024
  • 资助金额:
    $ 33.93万
  • 项目类别:
    Standard Grant
Collaborative Research: URoL:ASC: Microbiome-mediated plant genetic resistance for enhanced agricultural sustainability
合作研究:URoL:ASC:微生物介导的植物遗传抗性以增强农业可持续性
  • 批准号:
    2319568
  • 财政年份:
    2023
  • 资助金额:
    $ 33.93万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH-PGR: Predicting Phenotype from Molecular Profiles with Deep Learning: Topological Data Analysis to Address a Grand Challenge in the Plant Sciences
合作研究:RESEARCH-PGR:利用深度学习从分子概况预测表型:拓扑数据分析应对植物科学的重大挑战
  • 批准号:
    2310356
  • 财政年份:
    2023
  • 资助金额:
    $ 33.93万
  • 项目类别:
    Standard Grant
Collaborative Research: How to manipulate a plant? Testing for conserved effectors and plant responses in gall induction and growth using a multi-species comparative approach.
合作研究:如何操纵植物?
  • 批准号:
    2305880
  • 财政年份:
    2023
  • 资助金额:
    $ 33.93万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Biodiversity and stability on a changing planet: plant traits and interactions that stabilize or destabilize ecosystems and populations
合作研究:BoCP-实施:不断变化的星球上的生物多样性和稳定性:稳定或破坏生态系统和种群的植物性状和相互作用
  • 批准号:
    2224853
  • 财政年份:
    2023
  • 资助金额:
    $ 33.93万
  • 项目类别:
    Standard Grant
Collaborative Research: TRTech-PGR: PlantSynBio: FuncZyme: Building a pipeline for rapid prediction and functional validation of plant enzyme activities
合作研究:TRTech-PGR:PlantSynBio:FuncZyme:建立植物酶活性快速预测和功能验证的管道
  • 批准号:
    2310396
  • 财政年份:
    2023
  • 资助金额:
    $ 33.93万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH-PGR: Predicting Phenotype from Molecular Profiles with Deep Learning: Topological Data Analysis to Address a Grand Challenge in the Plant Sciences
合作研究:RESEARCH-PGR:利用深度学习从分子概况预测表型:拓扑数据分析应对植物科学的重大挑战
  • 批准号:
    2310355
  • 财政年份:
    2023
  • 资助金额:
    $ 33.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了