Discrete Potential Theory and Perturbations of Ground State Configurations
离散势理论和基态构型的扰动
基本信息
- 批准号:0808093
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-15 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project focuses on the study of discretizations of compact manifolds in Euclidean space via minimal energy points, with special emphasis on Riesz energy kernels. Previous work on the discrete equilibrium configurations for the Riesz s-energy (generalized Thomson problem) showed the utility of investigating the dependence of behavior on the parameter s. Of particular interest is the critical value that occurs when s equals the Hausdorff dimension of the manifold and a transition occurs from long range to short range interactions. This project will investigate: (i) finer asymptotics for the minimal energy and its connection with the curvature and smoothness properties of the manifold; (ii) for dimensions 2, 8, and 24, the determination (or estimation) of constants arising in the minimal energy expansion in terms of the zeta functions in s for special lattices existing in these dimensions; (iii) asymptotic results for energy on self-similar sets; (iv) the behavior of "greedy energy points," especially in the presence of an external field; (v) the determination of the limiting support of discrete long range minimal energy configurations on surfaces of revolution; and (vi) development and analysis of algorithms for the fast generation of uniformly distributed points on manifolds.This research project focuses on the mathematics of how charged particles on a curved surface arrange themselves in a stable configuration when interacting through two-particle repulsive interactions. This study of the ordering of matter will broaden the understanding of the physics of membranes and films and has applications to the design of new materials with novel optical and electronic properties. A related aspect of the project is the rapid generation of data sampling points on curved surfaces (such as the earth) which can be used to measure a variety of physical properties. Such methods for point generation are also useful for testing detection devices such as radar systems. This research addresses in several different contexts the fundamental problem of how best to convert from analog to digital.
本研究项目主要研究欧氏空间中紧致流形通过极小能量点的离散化,特别强调Riesz能量核。以前的工作的离散平衡配置的Riesz s-能量(广义汤姆森问题)表明调查的依赖性的行为的参数s的效用。 特别感兴趣的是临界值时,发生的S等于豪斯多夫维数的流形和过渡发生从远程到短程相互作用。 该项目将调查:(i)最小能量的更精细的渐近性及其与流形的曲率和光滑性的联系;(ii)对于2,8和24维,确定(或估计)的常数出现在最小的能量扩展的zeta函数在s中的特殊格存在于这些方面;(iii)渐近结果的能量自相似集;(iv)“贪婪能量点”的行为,特别是在外场存在的情况下;(v)旋转曲面上离散长程最小能量组态的极限支撑的确定;和(六)发展和分析算法的快速生成均匀分布的点的流形上。这个研究项目的重点是数学的带电粒子如何在一个当通过两粒子排斥相互作用相互作用时,弯曲表面以稳定构型排列它们自己。 对物质有序性的研究将拓宽对膜和薄膜物理学的理解,并应用于设计具有新颖光学和电子特性的新材料。 该项目的一个相关方面是在曲面(例如地球)上快速生成数据采样点,可用于测量各种物理特性。 用于点生成的这种方法也可用于测试诸如雷达系统的检测设备。 这项研究在几个不同的背景下解决了如何最好地从模拟转换为数字的基本问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Douglas Hardin其他文献
Energy bounds for weighted spherical codes and designs via linear programming
通过线性规划加权球形代码和设计的能量界限
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sergiy Borodachov;P. Boyvalenkov;P. Dragnev;Douglas Hardin;Edward Saff;Maya M. Stoyanova - 通讯作者:
Maya M. Stoyanova
Corrigendum to “Asymptotics for the Unconstrained Polarization (Chebyshev) Problem”
- DOI:
10.1007/s11118-022-09999-4 - 发表时间:
2022-07-04 - 期刊:
- 影响因子:0.800
- 作者:
Douglas Hardin;Mircea Petrache;Edward B. Saff - 通讯作者:
Edward B. Saff
Douglas Hardin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Douglas Hardin', 18)}}的其他基金
Collaborative Research: Computational methods for ultra-high sensitivity magnetometry of geological samples
合作研究:地质样品超高灵敏度磁力测量计算方法
- 批准号:
1521749 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Constructive Functions 2014 Conference and School
2014 年会议和学校建设性活动
- 批准号:
1363146 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Optimal Weighted and Constrained Energy Configurations and Applications
最佳加权和约束能量配置和应用
- 批准号:
1109266 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Conference on Optimal Configurations on the Sphere and Other Manifolds
球体和其他流形上的最优配置会议
- 批准号:
0962939 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Ordered Distributions and Wavelets on Two-Dimensional Manifolds
二维流形上的有序分布和小波
- 批准号:
0505756 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Computational Equipment for Approximation Theory, Control Theory, Graph Theory
近似论、控制论、图论的计算设备
- 批准号:
0215442 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Computational Equipment for Analysis, Approximation Theory and Graph Theory
分析、近似论和图论的计算设备
- 批准号:
9627984 - 财政年份:1996
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mathematical Sciences: Orthogonal Multiwavelet Constructions
数学科学:正交多小波构造
- 批准号:
9500905 - 财政年份:1995
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Transient Receptor Potential 通道 A1在膀胱过度活动症发病机制中的作用
- 批准号:30801141
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Exploring Large-Scale Geometry via Local and Nonlocal Potential Theory
通过局部和非局部势理论探索大尺度几何
- 批准号:
2348748 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Number Theory, Potential Theory, and Convex Optimization
数论、势论和凸优化
- 批准号:
2401242 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Studies on potential theory for revealing nonlinear problems
揭示非线性问题的势论研究
- 批准号:
23K03149 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of an integral equation theory satisfying the variational principle and accurate for long-range potential systems
满足变分原理且对长程势系统准确的积分方程理论的发展
- 批准号:
23K04666 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Potential Theory Workshop: Intersections in Harmonic Analysis, Partial Differential Equations and Probability
会议:势理论研讨会:调和分析、偏微分方程和概率的交集
- 批准号:
2324706 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Tropical to temperate forest dynamics and their potential influences on plant performance strategies, a theory-data fusion approach
职业:热带到温带森林动态及其对植物性能策略的潜在影响,一种理论数据融合方法
- 批准号:
2239483 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Breakthrough in the New Formenlehre: On the Musicological Potential of Music Theory and Analysis
新形式的突破:论音乐理论与分析的音乐学潜力
- 批准号:
2884601 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
The PayCaptain SmartSave: A nudge-theory-based AI-algorithm-driven app to unlock peoples' savings potential and generate financial resilience
PayCaptain SmartSave:一款基于助推理论的人工智能算法驱动的应用程序,可释放人们的储蓄潜力并增强财务弹性
- 批准号:
10032784 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Using Theory- and Data-Driven Neurocomputational Approaches and Digital Phenotyping to Understand RDoC Acute and Potential Threat
使用理论和数据驱动的神经计算方法和数字表型来了解 RDoC 急性和潜在威胁
- 批准号:
10661086 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Convex Geometric Potential Theory
凸几何势理论
- 批准号:
RGPIN-2017-05036 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual