Optimal Weighted and Constrained Energy Configurations and Applications

最佳加权和约束能量配置和应用

基本信息

  • 批准号:
    1109266
  • 负责人:
  • 金额:
    $ 24.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-15 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

HardinDMS-1109266 The investigator and his colleagues study the theory and applications of discrete minimum energy problems that are of significance in the discretization of compact metric spaces. By utilizing minimal weighted Riesz energy configurations, one can generate sequences of points on surfaces that approximate prescribed density functions on that surface. Such constructions have a myriad of possible applications to the physical and biological sciences. Specifically, the team is studying (i) separation and fill-radius estimates for optimal N-point weighted energy configurations; (ii) geometrical properties of optimal and near optimal weighted energy configurations on 2-dimensional surfaces; (iii) algorithms for the fast generation of points distributed on a manifold in accordance with a prescribed density; (iv) properties of greedy energy points; and (v) near optimal discretizations for problems of importance in geophysical applications. The investigator and his colleagues study stable (minimum energy) states of charged particle configurations on curved surfaces and solid materials, especially when such particles are restricted in density or under the influence of external forces. One goal of the project is to determine efficient numerical methods for the generation of optimal or near optimal distributions of point charges that can be used to help understand the convection of the Earth's mantle, for the modeling of the geodynamo, and to gain a better determination of the Earth's gravitational field. This project addresses in several different contexts the fundamental problem of how best to convert from analog to digital.
研究者和他的同事研究了离散最小能量问题的理论和应用,这在紧化度量空间的离散化中具有重要意义。通过利用最小加权Riesz能量配置,可以在表面上生成近似于该表面上规定密度函数的点序列。这样的结构在物理和生物科学中有无数可能的应用。具体来说,该团队正在研究(1)分离和填充半径估计,以获得最佳n点加权能量配置;(ii)二维曲面上最优和近似最优加权能量构型的几何性质;(iii)按规定密度快速生成分布在流形上的点的算法;(iv)贪心能量点的性质;(v)地球物理应用中重要问题的近最优离散化。研究者和他的同事们研究了曲面和固体材料上带电粒子构型的稳定(最小能量)状态,特别是当这些粒子的密度受到限制或受到外力影响时。该项目的一个目标是确定产生最佳或接近最佳点电荷分布的有效数值方法,这些方法可用于帮助理解地球地幔的对流,用于地球发电机的建模,并更好地确定地球的引力场。这个项目在几个不同的背景下解决了如何最好地从模拟到数字转换的基本问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Douglas Hardin其他文献

Energy bounds for weighted spherical codes and designs via linear programming
通过线性规划加权球形代码和设计的能量界​​限
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sergiy Borodachov;P. Boyvalenkov;P. Dragnev;Douglas Hardin;Edward Saff;Maya M. Stoyanova
  • 通讯作者:
    Maya M. Stoyanova
Corrigendum to “Asymptotics for the Unconstrained Polarization (Chebyshev) Problem”
  • DOI:
    10.1007/s11118-022-09999-4
  • 发表时间:
    2022-07-04
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Douglas Hardin;Mircea Petrache;Edward B. Saff
  • 通讯作者:
    Edward B. Saff

Douglas Hardin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Douglas Hardin', 18)}}的其他基金

Collaborative Research: Computational methods for ultra-high sensitivity magnetometry of geological samples
合作研究:地质样品超高灵敏度磁力测量计算方法
  • 批准号:
    1521749
  • 财政年份:
    2015
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Constructive Functions 2014 Conference and School
2014 年会议和学校建设性活动
  • 批准号:
    1363146
  • 财政年份:
    2014
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Conference on Optimal Configurations on the Sphere and Other Manifolds
球体和其他流形上的最优配置会议
  • 批准号:
    0962939
  • 财政年份:
    2010
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Discrete Potential Theory and Perturbations of Ground State Configurations
离散势理论和基态构型的扰动
  • 批准号:
    0808093
  • 财政年份:
    2008
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Ordered Distributions and Wavelets on Two-Dimensional Manifolds
二维流形上的有序分布和小波
  • 批准号:
    0505756
  • 财政年份:
    2005
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Continuing Grant
Computational Equipment for Approximation Theory, Control Theory, Graph Theory
近似论、控制论、图论的计算设备
  • 批准号:
    0215442
  • 财政年份:
    2002
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Computational Equipment for Analysis, Approximation Theory and Graph Theory
分析、近似论和图论的计算设备
  • 批准号:
    9627984
  • 财政年份:
    1996
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Orthogonal Multiwavelet Constructions
数学科学:正交多小波构造
  • 批准号:
    9500905
  • 财政年份:
    1995
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant

相似海外基金

22 UKRI-SBE: Contextually and probabilistically weighted auditory selective attention: from neurons to networks
22 UKRI-SBE:上下文和概率加权听觉选择性注意:从神经元到网络
  • 批准号:
    BB/X013103/1
  • 财政年份:
    2023
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Research Grant
Spectral theory of Schrodinger forms and Stochastic analysis for weighted Markov processes
薛定谔形式的谱论和加权马尔可夫过程的随机分析
  • 批准号:
    23K03152
  • 财政年份:
    2023
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Coupling PDE-Based Computational Inversion and Learning Via Weighted Optimization
通过加权优化耦合基于偏微分方程的计算反演和学习
  • 批准号:
    2309802
  • 财政年份:
    2023
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Experimental Design-based Weighted Sampling
基于实验设计的加权抽样
  • 批准号:
    2310637
  • 财政年份:
    2023
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Development and application of weighted adjacency matrix estimation methods based on multivariate data
基于多元数据的加权邻接矩阵估计方法的开发与应用
  • 批准号:
    23K01377
  • 财政年份:
    2023
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Map Paravascular Fluid Dynamic Signatures of Key Aging and AD Processes Using Dynamics Diffusion-Weighted Imaging
使用动力学扩散加权成像绘制关键衰老和 AD 过程的血管旁流体动态特征
  • 批准号:
    10739365
  • 财政年份:
    2023
  • 资助金额:
    $ 24.91万
  • 项目类别:
CAREER: Weighted Fourier extension estimates and interactions with PDEs and geometric measure theory
职业:加权傅里叶扩展估计以及与偏微分方程和几何测度理论的相互作用
  • 批准号:
    2237349
  • 财政年份:
    2023
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Continuing Grant
SBE-UKRI: Contextually and probabilistically weighted auditory selective attention: from neurons to networks
SBE-UKRI:上下文和概率加权听觉选择性注意:从神经元到网络
  • 批准号:
    2414066
  • 财政年份:
    2023
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Standard Grant
Improving the diagnostic accuracy of breast MRI without contrast agent using the parameters of abbreviated diffusion-weighted image.
利用简化扩散加权图像参数提高无造影剂乳腺 MRI 的诊断准确性。
  • 批准号:
    23K07211
  • 财政年份:
    2023
  • 资助金额:
    $ 24.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Weighted semigroup approach for Fokker-Planck-Kolmogorov equations
Fokker-Planck-Kolmogorov 方程的加权半群方法
  • 批准号:
    517982119
  • 财政年份:
    2023
  • 资助金额:
    $ 24.91万
  • 项目类别:
    WBP Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了