HCC-Large: Using the Internet without using the Eyes: Models of Online Transactions for Non-Visual Interaction
HCC-Large:不使用眼睛使用互联网:非视觉交互在线交易模型
基本信息
- 批准号:0808678
- 负责人:
- 金额:$ 158.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Internet has become the primary medium for accessing information and for conducting many types of online transactions, including shopping, paying bills, making travel plans, applying for college or employment, and participating in civic activities. The primary mode of interaction over the Internet is via graphical browsers designed for visual navigation. This seriously limits the access of people with impaired vision or blindness, a population that is large and growing ever larger. Existing assistive technology for non-visual Internet access typically forces users with visual impairments into an inefficient, sequential mode of information access. To do better, two kinds of models are needed. First, we need to build computational models to represent the structure of web pages and online transactions, and to present them effectively using non-visual modalities. Second, we need to better understand how users' mental models for online transactions are built and utilized; we then need to align the computational models with the users' mental models, so as to combine their strengths and significantly improve the efficiency of non-visual interactions. In previous work, the PI developed the HearSay non-visual web browser, which permits users to perform basic non-visual web browsing and search, contextual browsing, and online form-filling. However, HearSay does not take full advantage of the interaction context or the unique perceptual and processing strengths of people with visual impairments. In the current project, the PI seeks to combine basic computational and psychological research designed to produce accessibility technology embodying the synergy of computational modeling and users' mental models. In terms of computational research, the PI will: (i) automatically track the interaction context of user browsing actions; (ii) automatically build models for transactions that users perform online; and (iii) develop ways in which users can interact with transaction models through non-visual modalities efficiently and effectively. In terms of psychological research, user studies will be conducted to examine (i) how people build mental models for online transactions, and (ii) how they use modality-specific cues and their own short-term memory to utilize these mental models. The PI will incorporate the findings from these user studies into the computational models for online transaction processing, so as to align them with the users' mental models.Broader Impacts: The ultimate goal of the PI's research is to empower people with visual impairments to lead completely independent lives with the help of the Internet. To this end, the PI has planned an extensive dissemination campaign involving workshops, collaborations with institutions that serve people who have visual impairments, and online dissemination of HearSay prototypes and HearSay component technologies. HearSay will also provide a means, in principle, for anyone who wishes to have non-visual Internet access (e.g., listening to Internet content while driving).
互联网已成为获取信息和进行多种在线交易的主要媒介,包括购物、支付账单、制定旅行计划、申请大学或就业以及参与公民活动。 互联网上的主要交互模式是通过为视觉导航而设计的图形浏览器。这严重限制了视力受损或失明的人的机会,而这一人口数量庞大,而且还在不断增加。 现有的非视觉互联网访问辅助技术通常迫使有视觉障碍的用户进入一种低效的、顺序的信息访问模式。 为了做得更好,需要两种模型。 首先,我们需要建立计算模型来表示网页和在线交易的结构,并使用非视觉方式有效地呈现它们。 其次,我们需要更好地理解用户在线交易的心理模型是如何建立和利用的;然后我们需要将计算模型与用户的心理模型相结合,以便联合收割机结合它们的优势,并显着提高非视觉交互的效率。 在以前的工作中,PI开发了HearSay非视觉Web浏览器,允许用户执行基本的非视觉Web浏览和搜索,上下文浏览和在线表单填写。 然而,道听途说并没有充分利用互动环境或视觉障碍者独特的感知和处理能力。 在目前的项目中,PI寻求将联合收割机基础计算和心理学研究相结合,旨在产生体现计算建模和用户心理模型协同作用的无障碍技术。 在计算研究方面,PI将:(i)自动跟踪用户浏览行为的交互上下文;(ii)自动为用户在线执行的交易构建模型;(iii)开发用户可以通过非视觉方式高效和有效地与交易模型交互的方法。 在心理学研究方面,将进行用户研究,以检查(i)人们如何建立在线交易的心理模型,以及(ii)他们如何使用特定于模态的线索和自己的短期记忆来利用这些心理模型。 PI将把这些用户研究的结果纳入在线交易处理的计算模型中,使其与用户的心理模型相一致。更广泛的影响:PI研究的最终目标是使视障人士能够借助互联网过上完全独立的生活。 为此,公共信息机构计划开展广泛的宣传活动,包括举办讲习班、与为视力障碍者提供服务的机构合作以及在线宣传HearSay原型和HearSay组件技术。 HearSay原则上还将为任何希望非视觉互联网访问的人提供一种手段(例如,在开车时收听互联网内容)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IV Ramakrishnan其他文献
IV Ramakrishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IV Ramakrishnan', 18)}}的其他基金
Next Generation Screen Magnification Technology for People with Low Vision
适合弱视人士的下一代屏幕放大技术
- 批准号:
1805076 - 财政年份:2018
- 资助金额:
$ 158.29万 - 项目类别:
Standard Grant
CRI: IAD - Web Accessibility Laboratory
CRI:IAD - 网络无障碍实验室
- 批准号:
0751083 - 财政年份:2008
- 资助金额:
$ 158.29万 - 项目类别:
Continuing Grant
Content-Driven Techniques for Non-Visual Web Access
非可视化 Web 访问的内容驱动技术
- 批准号:
0534419 - 财政年份:2005
- 资助金额:
$ 158.29万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Deduction with Constraints.
美法合作研究:带约束的演绎。
- 批准号:
9314412 - 财政年份:1994
- 资助金额:
$ 158.29万 - 项目类别:
Standard Grant
Computational Aspects of Rewrite Operations
重写操作的计算方面
- 批准号:
8805734 - 财政年份:1988
- 资助金额:
$ 158.29万 - 项目类别:
Continuing Grant
Research Initiation: Design and Analysis of VLSI Array Algorithms
研究发起:VLSI阵列算法设计与分析
- 批准号:
8404399 - 财政年份:1984
- 资助金额:
$ 158.29万 - 项目类别:
Standard Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344259 - 财政年份:2024
- 资助金额:
$ 158.29万 - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344260 - 财政年份:2024
- 资助金额:
$ 158.29万 - 项目类别:
Standard Grant
Correlating neuronal activity and large volume nanoscale imaging using AI
使用 AI 将神经元活动与大体积纳米级成像关联起来
- 批准号:
BB/Y51391X/1 - 财政年份:2024
- 资助金额:
$ 158.29万 - 项目类别:
Research Grant
Inferring the evolution of functional connectivity over learning in large-scale neural recordings using low-tensor-rank recurrent neural networks
使用低张量秩递归神经网络推断大规模神经记录中功能连接学习的演变
- 批准号:
BB/Y513957/1 - 财政年份:2024
- 资助金额:
$ 158.29万 - 项目类别:
Research Grant
Evaluating scientific and ethical approaches to newborn screening with whole genome sequencing using large-scale population cohorts
使用大规模人群队列评估通过全基因组测序进行新生儿筛查的科学和伦理方法
- 批准号:
MR/X021351/1 - 财政年份:2024
- 资助金额:
$ 158.29万 - 项目类别:
Research Grant
Cooperative Virtual Synchronous Machine Control of Multiple Inverters Using Low-Speed Communication to Achieve Large-Scale Installation of Renewable Energy
利用低速通信的多台逆变器协同虚拟同步机控制实现可再生能源大规模安装
- 批准号:
23H01395 - 财政年份:2023
- 资助金额:
$ 158.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Causal inference of oral and general health using multiple large cohorts, NDB, and hospital data
使用多个大型队列、NDB 和医院数据对口腔和一般健康状况进行因果推断
- 批准号:
23H03117 - 财政年份:2023
- 资助金额:
$ 158.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on Heavy Rainfall Mechanism by Mathematical and Data-Driven Approach Using Large Ensemble
利用大集合的数学和数据驱动方法研究强降雨机制
- 批准号:
23KF0161 - 财政年份:2023
- 资助金额:
$ 158.29万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Improved optimization of covalent ligands using a novel implementation of quantum mechanics suitable for large ligand/protein systems.
使用适用于大型配体/蛋白质系统的量子力学的新颖实现改进了共价配体的优化。
- 批准号:
10601968 - 财政年份:2023
- 资助金额:
$ 158.29万 - 项目类别:
Development of "ultra" large displacement dynamic analysis algorithm using machine learning
利用机器学习开发“超”大位移动态分析算法
- 批准号:
23K04007 - 财政年份:2023
- 资助金额:
$ 158.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)