Order and Defects in Soft Matter Architecture
软物质结构中的秩序和缺陷
基本信息
- 批准号:0808812
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-05-01 至 2013-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThis award supports theoretical and computational research in contact with experiment on the interplay among order, defects and geometry in soft matter systems on curved surfaces and interfaces with a focus on crystalline, hexatic, vector and nematic order.Topological defects frequently appear even in the ground state of ordered systems on curved surfaces. Some defects are required by certain topologies such as the sphere and others form to lower the total energy of the system. Defect regions are natural places for biological activity, chemical linking, unusual elastic response and aggregation of disorder. This project will develop a thorough understanding of the preferred types of defect configurations for crystalline, hexatic, vector and nematic order on a variety of curved surfaces. This will pave the way for the first-principles design of entire libraries of mesoscale components (mesoatoms) that could serve as the building blocks of novel mesomolecules or bulk materials via self-assembly or controlled fabrication.A suite of tools from the fields of geometry, topology, statistical mechanics and computational science will be employed in this investigation which will be closely coupled with experimental groups. The techniques and tools developed in the course of the proposed research, including methods of analysis, simulation applets, and databases, would be made freely available to researchers across disciplines.The PI plans to involve undergraduates, graduate students and postdoctoral associates in his research program. A particular effort will be made to recruit and retain Physics majors, particularly women, by involving them in soft condensed matter research projects. The PI also plans to bring his research into the classroom through a new Soft Matter undergraduate and to the wider community through public lectures in the Saturday Morning Physics program and the Syracuse chapter of Cafe Scientifique as well as visits to local K-12 schools. Demonstrations of soap bubble arrays on curved surfaces developed as research projects can be used in both the classroom and public lectures.NON-TECHNICAL SUMMARYThis award supports theoretical and computational research and education in contact with experiments that lies at the intersection of condensed matter physics, mathematics, and biology. The PI will study how particles organize themselves on curved surfaces and at the interfaces between two materials or media. For example, experiment has been able to place small particles with an electrostatic charge on the spherical surface of a water droplet suspended in oil. The particles attempt to organize themselves in a regular geometric pattern. But because they are on a sphere rather than a flat surface, ?scars? form where the ordered array on one side does not match up with that on the other. As shown by the PI, theory is at least able to make useful predictions about features of the self-organized system. The PI will study a wider variety of systems with an aim to understand the ?scars? or defects in ordering that emerge and how geometry might be used to control how particles self-assemble into desired structures. The structure of the protein coat on a virus is another example of interest to the PI. In this case, molecules might preferentially bind to areas where there are defects on curved surface of the virus protein coat suggesting strategies for drug development. The general challenging problem of how interacting particles arrange themselves on curved surfaces has been of general interest in the field of mathematics. The techniques and tools developed in the course of the proposed research, including methods of analysis, simulation applets, and databases, would be made freely available to researchers across disciplines.The PI plans to involve undergraduates, graduate students and postdoctoral associates in his research program. A particular effort will be made to recruit and retain Physics majors, particularly women, by involving them in soft condensed matter research projects. The PI also plans to bring his research into the classroom through a new Soft Matter undergraduate and to the wider community through public lectures in the Saturday Morning Physics program and the Syracuse chapter of Cafe Scientifique as well as visits to local K-12 schools. Demonstrations of soap bubble arrays on curved surfaces developed as research projects can be used in both the classroom and public lectures.
技术概述:该奖项支持与实验接触的理论和计算研究,研究曲面和界面上软物质系统中有序、缺陷和几何之间的相互作用,重点是晶体、六向、矢量和向列有序。在曲面上有序系统的基态中也经常出现拓扑缺陷。某些拓扑结构(如球体和其他形式)需要一些缺陷来降低系统的总能量。缺陷区是生物活性、化学连接、异常弹性反应和无序聚集的天然场所。该项目将深入了解各种曲面上晶体、六向、矢量和向列顺序的首选缺陷配置类型。这将为整个介尺度元件(介原子)库的第一性原理设计铺平道路,这些元件可以通过自组装或控制制造作为新型介分子或块状材料的构建块。本研究将采用几何学、拓扑学、统计力学和计算科学领域的一系列工具,并与实验组紧密结合。在拟议的研究过程中开发的技术和工具,包括分析方法、模拟小程序和数据库,将免费提供给跨学科的研究人员。PI计划让本科生、研究生和博士后参与他的研究项目。将特别努力招募和留住物理专业的学生,特别是女性,让她们参与软凝聚态物质的研究项目。PI还计划通过一个新的软物质本科课程将他的研究带入课堂,并通过周六上午物理课程和Syracuse Cafe Scientifique分会的公开讲座以及访问当地K-12学校,将他的研究带入更广泛的社区。作为研究项目开发的曲面上的肥皂泡阵列的演示可用于课堂和公开讲座。该奖项支持与凝聚态物理,数学和生物学交叉的实验接触的理论和计算研究和教育。PI将研究粒子如何在曲面和两种材料或介质之间的界面上组织自己。例如,实验已经能够将带有静电荷的小颗粒放置在悬浮在油中的水滴的球形表面上。这些粒子试图将自己组织成规则的几何图案。但是因为它们是在一个球体上而不是在一个平面上,所以伤痕?一方的有序数组与另一方的有序数组不匹配的形式。正如PI所示,理论至少能够对自组织系统的特征做出有用的预测。PI将研究更广泛的系统,目的是了解“伤疤”。或者出现的顺序缺陷,以及如何利用几何来控制粒子如何自组装成所需的结构。病毒蛋白质外壳的结构是PI感兴趣的另一个例子。在这种情况下,分子可能优先结合到病毒蛋白外壳曲面上有缺陷的区域,这为药物开发提供了策略。相互作用的粒子如何在曲面上排列,这一具有挑战性的问题一直是数学领域普遍关注的问题。在拟议的研究过程中开发的技术和工具,包括分析方法、模拟小程序和数据库,将免费提供给跨学科的研究人员。PI计划让本科生、研究生和博士后参与他的研究项目。将特别努力招募和留住物理专业的学生,特别是女性,让她们参与软凝聚态物质的研究项目。PI还计划通过一个新的软物质本科课程将他的研究带入课堂,并通过周六上午物理课程和Syracuse Cafe Scientifique分会的公开讲座以及访问当地K-12学校,将他的研究带入更广泛的社区。作为研究项目开发的曲面上的肥皂泡阵列的演示可用于课堂和公开讲座。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Bowick其他文献
Stresses come to light
压力显现出来
- DOI:
10.1038/nmat4786 - 发表时间:
2016-10-25 - 期刊:
- 影响因子:38.500
- 作者:
Mark Bowick;Paul Chaikin - 通讯作者:
Paul Chaikin
Mark Bowick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Bowick', 18)}}的其他基金
DMREF/Collaborative Research: Graphene Based Origami and Kirigami Metamaterials
DMREF/合作研究:基于石墨烯的折纸和剪纸超材料
- 批准号:
2011970 - 财政年份:2020
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Graphene Based Origami and Kirigami Metamaterials
DMREF/合作研究:基于石墨烯的折纸和剪纸超材料
- 批准号:
1435794 - 财政年份:2014
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
ITR: Statistical Physics and Computational Complexity
ITR:统计物理和计算复杂性
- 批准号:
0219292 - 财政年份:2002
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似海外基金
A new approach of adipose-derived stem cell regenerative medicine for postoperative defects after bone and soft tissue tumor surgery
脂肪干细胞再生医学治疗骨和软组织肿瘤术后缺损的新方法
- 批准号:
17K10962 - 财政年份:2017
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Defects in Soft Matter Systems
软物质系统缺陷分析
- 批准号:
1412840 - 财政年份:2014
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Soft Modes, Amorphous Defects and the Mechanical Properties of Metallic Glasses
金属玻璃的软模、非晶缺陷和机械性能
- 批准号:
DP140104659 - 财政年份:2014
- 资助金额:
$ 24万 - 项目类别:
Discovery Projects
Preclinical in vitro validation and in vivo evaluation of a new Biohybrid-Gradient-Layersystem-non woven as a carrier matrix for a vascular component for the supply of epithelial soft tissue defects
新型生物混合梯度层系统——无纺布作为血管成分的载体基质,用于供应上皮软组织缺损的临床前体外验证和体内评估
- 批准号:
255953801 - 财政年份:2014
- 资助金额:
$ 24万 - 项目类别:
Research Grants
Development of an bioactive preadipocyte loaded fibroin biohybrid for the augmentation of soft tissue defects.
开发一种负载丝心蛋白的生物活性前脂肪细胞生物杂交体,用于增强软组织缺陷。
- 批准号:
241346278 - 财政年份:2013
- 资助金额:
$ 24万 - 项目类别:
Research Grants
Periimplantitis and soft-tissue defects of dental implants: A pilot study on the fixing of the suprastructure as a possible factor affecting aetiology
牙种植体的种植体周围炎和软组织缺陷:上部结构固定作为影响病因的可能因素的初步研究
- 批准号:
237797147 - 财政年份:2013
- 资助金额:
$ 24万 - 项目类别:
Research Grants
Topological Defects, Curved Geometries, and Shape Evolution in Soft Matter
软物质中的拓扑缺陷、弯曲几何形状和形状演化
- 批准号:
1106014 - 财政年份:2011
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Repair of Soft Tissue Defects with Engineered Fat Grafts
用工程脂肪移植修复软组织缺损
- 批准号:
7574389 - 财政年份:2008
- 资助金额:
$ 24万 - 项目类别:
Repair of Soft Tissue Defects with Engineered Fat Grafts
用工程脂肪移植修复软组织缺损
- 批准号:
7470191 - 财政年份:2008
- 资助金额:
$ 24万 - 项目类别: