DMREF/Collaborative Research: Graphene Based Origami and Kirigami Metamaterials
DMREF/合作研究:基于石墨烯的折纸和剪纸超材料
基本信息
- 批准号:2011970
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graphene-Based Origami and Kirigami MetamaterialsNon-Technical Description: The paper arts of origami and kirigami ('ori' = fold, 'kiri' = cut) provide a powerful framework to design responsive and tunable new materials. For example, a simple series of cuts can turn a sheet of paper into an accordion-like spring, or a sequence of folds can convert it into a swan. Indeed, many biological tissues develop folds and cuts reminiscent of origami and kirigami that endow them with distinct and useful mechanical properties. The seemingly limitless number of forms that can be created speaks to the potential of exploiting such design principles for materials beyond paper. This project will extend these design ideas to the microscale using graphene, an atomically thin two dimensional material, as the nanoscale paper foundation. Lithographic techniques borrowed from the semiconductor industry will be used to pattern the graphene, and a variety of approaches will be employed to create folds, all chosen to realize a specific mechanical property. The focus is on creating mechanical 'metamaterials' - materials whose properties reflect the patterns of folds and cuts rather than the properties of the underlying paper. With room temperature applications in mind, the theoretical effort will focus on the crucial role of thermally-activated Brownian motion in determining the material properties of graphene monolayers with cuts and folds. This paper-arts-inspired strategy has the potential to fundamentally transform the way materials are designed for the micro-world and could find applications in areas ranging from micro-robotics to mechanical sensors and actuators that mimic biologically 'active' tissues.Technical Description: Using lithographic techniques, graphene sheets will be perforated and cut to create modules with prescribed mechanical properties. These modules will be assembled to create mechanical meta-materials whose response to applied stresses, temperature, and other environmental signals can be tailored. The project focuses on the following interrelated goals: (a) Experimentally testing current predictions for graphene's thermomechanical properties and their dependence on geometry and boundary conditions; (b) Creating a library of mechanically programmable modular units out of cut graphene sheets; (c) Designing meta-materials assembled out of the basic graphene kirigami and origami modules to achieve a particular function; (d) Creating a theory of thermally excited atomically thin membranes with cuts and folds, to guide experiments and improve understanding of the basic principles. These goals will form the cornerstone for building a general-purpose open source design tool that can be used by engineers to assemble materials out of the origami and kirigami based modules, simulate their mechanical properties, and allow for iterative design work flows. This tool will be used to promote rapid materials discovery, development, and property optimization of atomic membrane origami and kirigami metamaterials.
基于石墨烯的折纸和Kirigami超材料非技术描述:折纸和Kirigami的纸艺术(“ori”=折叠,“kiri”=切割)为设计响应性和可调的新材料提供了强大的框架。例如,一系列简单的切割可以把一张纸变成手风琴一样的弹簧,或者一系列的折叠可以把它变成一只天鹅。事实上,许多生物组织会产生褶皱和切口,让人想起折纸和基里伽米,从而赋予它们独特而有用的机械性能。可以创造的看似无限数量的形式说明了将这种设计原则用于纸张以外的材料的潜力。该项目将使用石墨烯(一种原子级薄的二维材料)作为纳米级纸的基础,将这些设计思想扩展到微观尺度。从半导体工业借鉴的光刻技术将用于石墨烯的图案,并将采用各种方法来创建折叠,所有选择都是为了实现特定的机械性能。研究的重点是创造机械“超材料”,这种材料的特性反映了折叠和切割的模式,而不是底层纸张的特性。考虑到室温应用,理论上的努力将集中在热激活布朗运动在确定具有切割和折叠的石墨烯单层材料特性中的关键作用。这种受纸张艺术启发的策略有可能从根本上改变为微观世界设计材料的方式,并可能在从微型机器人到机械传感器和模拟生物“活性”组织的执行器等领域找到应用。技术描述:使用光刻技术,石墨烯片将被穿孔和切割,以创建具有规定机械性能的模块。这些模块将组装成机械超材料,其对施加应力、温度和其他环境信号的响应可以量身定制。该项目侧重于以下相互关联的目标:(a)通过实验测试目前对石墨烯热机械性能的预测及其对几何和边界条件的依赖;(b)用切割的石墨烯薄片创建一个机械可编程模块化单元库;(c)设计由基本石墨烯基叠和折纸模块组装而成的超材料,以实现特定功能;(d)创立一种有切口和褶皱的热激发原子薄膜理论,以指导实验和增进对基本原理的了解。这些目标将成为构建通用开源设计工具的基石,工程师可以使用该工具从基于折纸和基里伽米的模块中组装材料,模拟其机械特性,并允许迭代设计工作流程。该工具将用于促进原子膜折纸和基里伽米超材料的快速发现、开发和性能优化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Bowick其他文献
Stresses come to light
压力显现出来
- DOI:
10.1038/nmat4786 - 发表时间:
2016-10-25 - 期刊:
- 影响因子:38.500
- 作者:
Mark Bowick;Paul Chaikin - 通讯作者:
Paul Chaikin
Mark Bowick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Bowick', 18)}}的其他基金
DMREF/Collaborative Research: Graphene Based Origami and Kirigami Metamaterials
DMREF/合作研究:基于石墨烯的折纸和剪纸超材料
- 批准号:
1435794 - 财政年份:2014
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Order and Defects in Soft Matter Architecture
软物质结构中的秩序和缺陷
- 批准号:
0808812 - 财政年份:2009
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
ITR: Statistical Physics and Computational Complexity
ITR:统计物理和计算复杂性
- 批准号:
0219292 - 财政年份:2002
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
- 批准号:
2323936 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Standard Grant