Spectrum Estimation for Spatial Processes
空间过程的频谱估计
基本信息
- 批准号:0808993
- 负责人:
- 金额:$ 17.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-21 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A new, unified approach for estimating spectral densities of spatial processes is proposed. The theoretical properties as well as practical implementation issues of this approach will be thoroughly explored. The completion of this project will provide powerful new tools for kriging, or optimal prediction in certain situations in spatial data analysis. Based on the relationship between the generalized covariance and the spectral density, a new approach is formulated for estimating the spectral density in terms of solving a regularized inverse problem. The generalized covariance can then be estimated thorough the estimated spectral density, which paves the way for kriging. The regularized inverse problem is solved in a reproducing kernel Hilbert space essentially as a constrained optimization problem. A number of crucial issues arise from that. Candidate procedures based on the ideas of unbiased-risk and generalized cross-validation will be studied for the determination of the optimal smoothing parameters from data. Theoretical properties, including mean squared error bounds and asymptotic properties, will be investigated to assess the performance of the approach. Efficient computational algorithms will be sought to overcome the difficulties brought by the high-dimensional nature of the data.The research in this project offers a new perspective on the analysis of spatial data. The kind of data that the investigator has in mind are data observed at multiple spatial locations and possibly also at multiple time points. The general goals are to identify the data generation process and to make predictions beyond the spatial-temporal region where data are available. One of the keys in such problems is to understand the dependence relationship between the various pieces of the data. The approach in this project targets this problem for a broad class of models. Potential applications of the new theory and methodology exist in numerous contexts, including the environment, geography, and sensor networks.
提出了一种新的、统一的空间过程谱密度估计方法。本文将深入探讨该方法的理论性质和实际实施问题。该项目的完成将为空间数据分析中某些情况下的kriging或最佳预测提供强大的新工具。基于广义协方差与谱密度的关系,提出了一种用正则化逆问题估计谱密度的新方法。然后可以通过估计的谱密度估计广义协方差,这为克里格算法铺平了道路。正则化逆问题本质上是一个约束优化问题,在再现核希尔伯特空间中求解。由此产生了一些关键问题。基于无偏风险和广义交叉验证思想的候选程序将被研究,以确定最优的平滑参数从数据。理论性质,包括均方误差界限和渐近性质,将进行研究,以评估该方法的性能。将寻求有效的计算算法来克服由数据的高维性质带来的困难。本课题的研究为空间数据分析提供了一个新的视角。调查人员所考虑的数据是在多个空间位置,也可能是在多个时间点观察到的数据。总体目标是确定数据生成过程,并在数据可用的时空区域之外进行预测。这类问题的关键之一是理解数据的各个部分之间的依赖关系。本项目中的方法针对的是一大类模型的这个问题。新理论和方法的潜在应用存在于许多背景中,包括环境、地理和传感器网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tailen Hsing其他文献
Multivariate Intrinsic Random Functions for Cokriging
- DOI:
10.1007/s11004-009-9218-4 - 发表时间:
2009-04-09 - 期刊:
- 影响因子:3.600
- 作者:
Chunfeng Huang;Yonggang Yao;Noel Cressie;Tailen Hsing - 通讯作者:
Tailen Hsing
An interview with Ross Leadbetter
- DOI:
10.1007/s10687-015-0225-1 - 发表时间:
2015-10-06 - 期刊:
- 影响因子:2.200
- 作者:
Tailen Hsing;Holger Rootzén - 通讯作者:
Holger Rootzén
Linear Processes, Long-Range Dependence and Asymptotic Expansions
- DOI:
10.1023/a:1009912917545 - 发表时间:
2000-01-01 - 期刊:
- 影响因子:1.000
- 作者:
Tailen Hsing - 通讯作者:
Tailen Hsing
Dependence Estimation and Visualization in Multivariate Extremes with Applications to Financial Data
- DOI:
10.1007/s10687-005-6194-z - 发表时间:
2005-04-07 - 期刊:
- 影响因子:2.200
- 作者:
Tailen Hsing;Claudia Klüppelberg;Gabriel Kuhn - 通讯作者:
Gabriel Kuhn
Tailen Hsing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tailen Hsing', 18)}}的其他基金
The Argo Data and Functional Spatial Processes
Argo 数据和功能空间过程
- 批准号:
1916226 - 财政年份:2019
- 资助金额:
$ 17.55万 - 项目类别:
Standard Grant
Math: EAGER: Researching the HyFlex+ Instructional Model of Blended Learning
数学:EAGER:研究混合学习的 HyFlex 教学模型
- 批准号:
1544337 - 财政年份:2015
- 资助金额:
$ 17.55万 - 项目类别:
Standard Grant
"Collaborative Research: Regression Problems in Functional Data Analysis"
“协作研究:函数数据分析中的回归问题”
- 批准号:
0806098 - 财政年份:2008
- 资助金额:
$ 17.55万 - 项目类别:
Continuing Grant
Spectrum Estimation for Spatial Processes
空间过程的频谱估计
- 批准号:
0707021 - 财政年份:2007
- 资助金额:
$ 17.55万 - 项目类别:
Continuing grant
Mathematical Sciences: Statistics and Probability Theory of Extremes and Stable Processes
数学科学:极值和稳定过程的统计和概率论
- 批准号:
9107507 - 财政年份:1991
- 资助金额:
$ 17.55万 - 项目类别:
Standard Grant
On Some Problems Concerning the Extremes of a Stationary Process
关于平稳过程极值的一些问题
- 批准号:
8814006 - 财政年份:1988
- 资助金额:
$ 17.55万 - 项目类别:
Standard Grant
相似海外基金
Bayesian estimation of soil layer parameters and immediate prediction of spatial distribution of hit probability in debris flow simulation
泥石流模拟中土层参数的贝叶斯估计及撞击概率空间分布的即时预测
- 批准号:
23K13412 - 财政年份:2023
- 资助金额:
$ 17.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Estimation of Crime Risk Areas on Spatial Autocorrelation Analysis based on Situational Crime Prevention Approach
基于情景犯罪预防方法的空间自相关分析犯罪风险区域估计
- 批准号:
23K04068 - 财政年份:2023
- 资助金额:
$ 17.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of the method for biological tissue domain estimation and analysis based on spatial omics data
基于空间组学数据的生物组织域估计与分析方法的建立
- 批准号:
23K11303 - 财政年份:2023
- 资助金额:
$ 17.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Toward the evaluation of human impacts on river discharge: High-resolution estimation of spatial discharge changes using AMHG scheme
评估人类对河流流量的影响:使用 AMHG 方案对空间流量变化进行高分辨率估计
- 批准号:
23KJ0709 - 财政年份:2023
- 资助金额:
$ 17.55万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Developing a new estimation method of wide-are genetic diversity using spatial interpolation
利用空间插值开发一种新的大范围遗传多样性估计方法
- 批准号:
22KJ3108 - 财政年份:2023
- 资助金额:
$ 17.55万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Spatial, Temporal and Multidimensional Statistics: Estimation, testing, and applications in the environmental sciences
空间、时间和多维统计:环境科学中的估计、测试和应用
- 批准号:
RGPIN-2021-02667 - 财政年份:2022
- 资助金额:
$ 17.55万 - 项目类别:
Discovery Grants Program - Individual
NSF Postdoctoral Fellowship in Biology: Evaluate how the spatial distribution of discrete genetic patterns influences ancestry estimation in spatial and nonspatial methods
NSF 生物学博士后奖学金:评估离散遗传模式的空间分布如何影响空间和非空间方法中的祖先估计
- 批准号:
2209320 - 财政年份:2022
- 资助金额:
$ 17.55万 - 项目类别:
Fellowship Award
Development of DNA damage estimation system based on spatial pattern of radiation track structure
基于辐射轨迹结构空间格局的DNA损伤估计系统研制
- 批准号:
22H03744 - 财政年份:2022
- 资助金额:
$ 17.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interdisciplinary studies of spatial motion estimation and motor planning
空间运动估计和运动规划的跨学科研究
- 批准号:
RGPIN-2017-05408 - 财政年份:2022
- 资助金额:
$ 17.55万 - 项目类别:
Discovery Grants Program - Individual
Spatial, Temporal and Multidimensional Statistics: Estimation, testing, and applications in the environmental sciences
空间、时间和多维统计:环境科学中的估计、测试和应用
- 批准号:
RGPIN-2021-02667 - 财政年份:2021
- 资助金额:
$ 17.55万 - 项目类别:
Discovery Grants Program - Individual