"Collaborative Research: Regression Problems in Functional Data Analysis"
“协作研究:函数数据分析中的回归问题”
基本信息
- 批准号:0806098
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern data collection methods are now frequently returning observations that could be viewed as the results of digitized recording or sampling from random functions. This project investigates regression problems for which the response is scalar but some of the predictors are functional. The general goal is to gain understanding on the inference of the models based on partially observed and error-contaminated functional data. Distinctions will be made between dense functional data, usually obtained from images, and sparse functional data, usually obtained from longitudinal studies. The specific topics include the consideration of (i) a functional generalized linear model for dense functional data using a penalized likelihood approach, (ii) dimension reduction methodologies based on sliced inverse regression and sliced average variance estimation, and (iii) a functional generalized linear model for sparse functional data using an approximated quasi-likelihood approach. New approaches will be proposed in the consideration of these problems, and asymptotic theories will be proved to validate the approaches. The sparse functional generalized linear model will be considered in a framework of joint modeling between a longitudinal life style profile and an endpoint health outcome. This involves the study of a new type of error-in-variable problem, which is expected to extend the horizon of longitudinal-data modeling.An important current focal point of statistical research is the so-called high-dimensional data analysis. Indeed, high-dimensional data are a fact of life. This is evidenced by our increasing need for larger storage devices on our computers. Roughly speaking, functional data are high-dimensional data which can be approximated by smooth curves or functions. Such data are abundant in scientific investigations, and it is of crucial importance to be able to effectively analyze such data. The PI will investigate approaches that will fundamentally contribute to the practice of functional data analysis. Direct applications of the research can be found in areas including image analysis, bioinformatics, and medicine. Research-level classes on functional data analysis based on this research will be offered at both University of Georgia and University of Michigan.
Modern data collection methods are now frequently returning observations that could be viewed as the results of digitized recording or sampling from random functions. This project investigates regression problems for which the response is scalar but some of the predictors are functional. The general goal is to gain understanding on the inference of the models based on partially observed and error-contaminated functional data. Distinctions will be made between dense functional data, usually obtained from images, and sparse functional data, usually obtained from longitudinal studies. The specific topics include the consideration of (i) a functional generalized linear model for dense functional data using a penalized likelihood approach, (ii) dimension reduction methodologies based on sliced inverse regression and sliced average variance estimation, and (iii) a functional generalized linear model for sparse functional data using an approximated quasi-likelihood approach. New approaches will be proposed in the consideration of these problems, and asymptotic theories will be proved to validate the approaches. The sparse functional generalized linear model will be considered in a framework of joint modeling between a longitudinal life style profile and an endpoint health outcome. This involves the study of a new type of error-in-variable problem, which is expected to extend the horizon of longitudinal-data modeling.An important current focal point of statistical research is the so-called high-dimensional data analysis. Indeed, high-dimensional data are a fact of life. This is evidenced by our increasing need for larger storage devices on our computers. Roughly speaking, functional data are high-dimensional data which can be approximated by smooth curves or functions. Such data are abundant in scientific investigations, and it is of crucial importance to be able to effectively analyze such data. The PI will investigate approaches that will fundamentally contribute to the practice of functional data analysis. Direct applications of the research can be found in areas including image analysis, bioinformatics, and medicine. Research-level classes on functional data analysis based on this research will be offered at both University of Georgia and University of Michigan.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tailen Hsing其他文献
Multivariate Intrinsic Random Functions for Cokriging
- DOI:
10.1007/s11004-009-9218-4 - 发表时间:
2009-04-09 - 期刊:
- 影响因子:3.600
- 作者:
Chunfeng Huang;Yonggang Yao;Noel Cressie;Tailen Hsing - 通讯作者:
Tailen Hsing
An interview with Ross Leadbetter
- DOI:
10.1007/s10687-015-0225-1 - 发表时间:
2015-10-06 - 期刊:
- 影响因子:2.200
- 作者:
Tailen Hsing;Holger Rootzén - 通讯作者:
Holger Rootzén
Linear Processes, Long-Range Dependence and Asymptotic Expansions
- DOI:
10.1023/a:1009912917545 - 发表时间:
2000-01-01 - 期刊:
- 影响因子:1.000
- 作者:
Tailen Hsing - 通讯作者:
Tailen Hsing
Dependence Estimation and Visualization in Multivariate Extremes with Applications to Financial Data
- DOI:
10.1007/s10687-005-6194-z - 发表时间:
2005-04-07 - 期刊:
- 影响因子:2.200
- 作者:
Tailen Hsing;Claudia Klüppelberg;Gabriel Kuhn - 通讯作者:
Gabriel Kuhn
Tailen Hsing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tailen Hsing', 18)}}的其他基金
The Argo Data and Functional Spatial Processes
Argo 数据和功能空间过程
- 批准号:
1916226 - 财政年份:2019
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Math: EAGER: Researching the HyFlex+ Instructional Model of Blended Learning
数学:EAGER:研究混合学习的 HyFlex 教学模型
- 批准号:
1544337 - 财政年份:2015
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Spectrum Estimation for Spatial Processes
空间过程的频谱估计
- 批准号:
0808993 - 财政年份:2007
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Spectrum Estimation for Spatial Processes
空间过程的频谱估计
- 批准号:
0707021 - 财政年份:2007
- 资助金额:
$ 9万 - 项目类别:
Continuing grant
Mathematical Sciences: Statistics and Probability Theory of Extremes and Stable Processes
数学科学:极值和稳定过程的统计和概率论
- 批准号:
9107507 - 财政年份:1991
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
On Some Problems Concerning the Extremes of a Stationary Process
关于平稳过程极值的一些问题
- 批准号:
8814006 - 财政年份:1988
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
- 批准号:
2415067 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Collaborative Research: Multiple Hypothesis Testing on the Regression Analysis
合作研究:回归分析的多重假设检验
- 批准号:
2311216 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Multiple Hypothesis Testing on the Regression Analysis
合作研究:回归分析的多重假设检验
- 批准号:
2311215 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Inference and Decentralized Computing for Quantile Regression and Other Non-Smooth Methods
合作研究:分位数回归和其他非平滑方法的推理和分散计算
- 批准号:
2401268 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
- 批准号:
2113589 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Collaborative Research: Inference and Decentralized Computing for Quantile Regression and Other Non-Smooth Methods
合作研究:分位数回归和其他非平滑方法的推理和分散计算
- 批准号:
2113346 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Inference and Decentralized Computing for Quantile Regression and Other Non-Smooth Methods
合作研究:分位数回归和其他非平滑方法的推理和分散计算
- 批准号:
2113409 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
- 批准号:
2113590 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Machine Learning Models for Function-on-Function Regression
合作研究:FET:小型:函数对函数回归的机器学习模型
- 批准号:
2007418 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Machine Learning Models for Function-on-Function Regression
合作研究:FET:小型:函数对函数回归的机器学习模型
- 批准号:
2007903 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Standard Grant














{{item.name}}会员




