MRI: Development of a Micro-Optical Stress Sensor for Fluid Mechanics Research

MRI:开发用于流体力学研究的微光学应力传感器

基本信息

  • 批准号:
    0809240
  • 负责人:
  • 金额:
    $ 33.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-10-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

AbstractProposal Title: MRI: Development of a Micro-Optical Sheer Stress Sensor for Fluid Mechanic ResearchProposal Number: CTS-0619193-MRIPrincipal Investigator: M. Volkan OtugenInstitution: Polytechnic University of New YorkIn this research, a novel micro-optical wall shear stress sensor will be developed for a number of fluid mechanics research projects at Polytechnic University. The micro-optical sensor is based on dielectric micro-beads that are excited by coupling light from an optical fiber. The technology exploits the morphology-dependent shifts in resonant frequencies that are commonly referred to as the whispering gallery modes (WGM). A minute change in the size, shape or optical constants of the micro-bead causes a shift in the resonant frequency (or the WGM). This shift can be related to the stress on the micro-bead. The sensor will provide direct, time-resolved, high-sensitivity, large bandwidth measurement of wall shear stress that is well resolved in space. The proposed research will develop a new concept for micro-optical wall shear stress sensors that is based on the WGMs of dielectric resonators which exploits recent technological developments in the telecommunications field. The effort will demonstrate a micro-optical wall shear stress sensor concept that has superior resolution and dynamic range than the currently available sensors and that has applications for both water and gas flows. The optical phenomenon that will be used in this effort can be exploited for the development of a new class of micro-sensors that can be used for a wide range of fluid dynamic applications; any physical stimuli that can directly or indirectly change the size, shape or optical constants (thereby causing a shift in the WGM) can be detected with resolution that are beyond what can be realized by the existing mechanical sensors. Further, the concept can be easily extended to a system of distributed micro-sensors providing spatial data that is also time-resolved. Although it is presently proposed to apply this optical phenomenon to develop wall shear stress sensors for use in fluid mechanics research projects, many other applications are possible including high-resolution temperature sensors. With the growth of wide-band communications through optical fibers, the use of WGMs of miniature optical elements are rapidly becoming commonplace in the telecommunication industry where components that are several wavelengths of light in size are used. However, such components are seldom manipulated mechanically to develop new sensor technologies. Although the primary area of application for the proposed sensor is fluid mechanics research, the proposed activity will have a much broader impact: the micro-optical wall shear sensor can have a significant impact on the modeling of pipeline networks, process control in manufacturing industries, and medical field uses. Further, the successful completion of this effort will lay the groundwork for the development of a much broader range of WGM-based sensors for temperature, pressure and species concentration. Therefore, with the development of rugged, reliable optical sensors of this kind, the long-term payoff are likely to be very significant. An interdisciplinary team of researchers will carry out the development activity. The development effort, along with the research projects, will have a direct impact on undergraduate and graduate education at Polytechnic University. These activities will form the basis of graduate student (PhD) dissertations and undergraduate student (Honors Program) theses. Further, through the Youth in Engineering and Science (YES) program at Polytechnic, a number of high-school students with diverse backgrounds from the New York metropolitan area will be trained during the summer months. Additionally, a number of undergraduate and graduate courses will directly benefit from the instrument development activity.
摘要提案标题:核磁共振成像:用于流体力学研究的微光学剪切应力传感器的开发建议编号:CTS-0619193-MRI主要研究者: M. Volkan Otugen机构: 纽约理工大学在这项研究中,一种新型的微型光学壁面切应力传感器将开发的一些流体力学研究项目在理工大学。微光学传感器是基于介电微珠,通过耦合来自光纤的光激发。该技术利用了通常被称为回音壁模式(WGM)的谐振频率的形态依赖性偏移。微珠的尺寸、形状或光学常数的微小变化会导致谐振频率(或WGM)的偏移。这种偏移可能与微珠上的应力有关。该传感器将提供直接的、时间分辨的、高灵敏度的、大带宽的壁面剪应力测量,该壁面剪应力在空间上很好地分辨。拟议的研究将开发一个新的概念,微光学壁剪切应力传感器是基于WGM的介质谐振器,利用最近的技术发展在电信领域。这项工作将展示一个微型光学壁面剪切应力传感器的概念,具有上级分辨率和动态范围比目前可用的传感器,并有水和气体流动的应用。将在这项工作中使用的光学现象,可以利用开发的一类新的微传感器,可用于广泛的流体动力学应用;任何物理刺激,可以直接或间接地改变的大小,形状或光学常数(从而导致在WGM的移位)可以检测到的分辨率是超越了可以实现的现有的机械传感器。此外,这个概念可以很容易地扩展到分布式微传感器系统,提供空间数据,也是时间分辨的。虽然目前提出应用这种光学现象来开发用于流体力学研究项目的壁面剪切应力传感器,但许多其他应用是可能的,包括高分辨率温度传感器。随着通过光纤的宽带通信的增长,微型光学元件的WGM的使用在电信行业中迅速变得普遍,在电信行业中使用尺寸为几个光波长的组件。然而,这样的组件很少被机械地操纵以开发新的传感器技术。 虽然所提出的传感器的主要应用领域是流体力学研究,但所提出的活动将产生更广泛的影响:微型光学壁剪切传感器可以对管道网络的建模,制造业的过程控制和医疗领域的使用产生重大影响。此外,这项工作的成功完成将为开发更广泛的基于WGM的温度,压力和物质浓度传感器奠定基础。因此,随着这种坚固、可靠的光学传感器的发展,长期回报可能非常显著。 一个跨学科的研究小组将开展开发活动。 开发工作,沿着研究项目,将对理工大学的本科生和研究生教育产生直接影响。这些活动将形成研究生(博士)论文和本科生(荣誉课程)论文的基础。此外,通过理工学院的青年工程和科学方案,将在夏季培训来自纽约大都市地区的一些具有不同背景的高中生。此外,许多本科生和研究生课程将直接受益于仪器开发活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

M. Volkan Otugen其他文献

M. Volkan Otugen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('M. Volkan Otugen', 18)}}的其他基金

MRI: Development of a Micro-Optical Stress Sensor for Fluid Mechanics Research
MRI:开发用于流体力学研究的微光学应力传感器
  • 批准号:
    0619193
  • 财政年份:
    2006
  • 资助金额:
    $ 33.19万
  • 项目类别:
    Standard Grant
SGER: A Micro-Optical Wall Shear Stress Sensor Based on Whispering Gallery Mode Resonators
SGER:基于回音壁模式谐振器的微光学壁剪应力传感器
  • 批准号:
    0502421
  • 财政年份:
    2005
  • 资助金额:
    $ 33.19万
  • 项目类别:
    Standard Grant
A Laser Probe for the Dynamic Measurement of Vorticity
用于涡度动态测量的激光探头
  • 批准号:
    0002658
  • 财政年份:
    2000
  • 资助金额:
    $ 33.19万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

MRI: Development of a Cryogenic Integrated Micro-Raman-Brillouin-Mandelstam Spectrometer
MRI:低温集成微型拉曼-布里渊-曼德尔斯坦光谱仪的开发
  • 批准号:
    2019056
  • 财政年份:
    2020
  • 资助金额:
    $ 33.19万
  • 项目类别:
    Standard Grant
MRI: Development of an Advanced Micro-Spectroscope for Imaging Quaternary Structure, Trafficking, and Dynamics of Macromolecular Systems in Live Cells
MRI:开发先进的显微光谱仪,用于对活细胞中大分子系统的四级结构、运输和动力学进行成像
  • 批准号:
    1626450
  • 财政年份:
    2016
  • 资助金额:
    $ 33.19万
  • 项目类别:
    Standard Grant
MRI: Development of a Micro-Pulse DIAL (MPD) Testbed for Sensing Lower Tropospheric Water Vapor Profiles
MRI:开发用于感测对流层下部水蒸气剖面的微脉冲 DIAL (MPD) 测试台
  • 批准号:
    1624736
  • 财政年份:
    2016
  • 资助金额:
    $ 33.19万
  • 项目类别:
    Standard Grant
Development of a micro infarction detection system aimed at an early diagnosis of dementia on MRI examination
开发微梗塞检测系统,旨在通过 MRI 检查早期诊断痴呆症
  • 批准号:
    15K19206
  • 财政年份:
    2015
  • 资助金额:
    $ 33.19万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
MRI: Development of Testbed Platform for Advanced Multi-Stage Automation and Control for Smart and Micro Grid
MRI:智能微电网先进多级自动化与控制测试平台的开发
  • 批准号:
    1429093
  • 财政年份:
    2014
  • 资助金额:
    $ 33.19万
  • 项目类别:
    Standard Grant
MRI-QSI method sequence optimization by development and research of micro polyhedral structure analysis
通过微观多面体结构分析的开发和研究优化MRI-QSI方法序列
  • 批准号:
    23591785
  • 财政年份:
    2011
  • 资助金额:
    $ 33.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MRI-R2: Development of Micro Tensile Tester Operated in Atomic Force Microscopy
MRI-R2:原子力显微镜微拉伸测试仪的开发
  • 批准号:
    0959605
  • 财政年份:
    2010
  • 资助金额:
    $ 33.19万
  • 项目类别:
    Standard Grant
MRI: Development of a Complex Topography Photolithography Tool for Micro-Patterning on Non-Flat Substrates.
MRI:开发用于在非平面基板上进行微图案化的复杂形貌光刻工具。
  • 批准号:
    0923506
  • 财政年份:
    2009
  • 资助金额:
    $ 33.19万
  • 项目类别:
    Standard Grant
MRI: Development of a State-of-the-Art Laser Micro-machining and Surface Engineering System
MRI:开发最先进的激光微加工和表面工程系统
  • 批准号:
    0923000
  • 财政年份:
    2009
  • 资助金额:
    $ 33.19万
  • 项目类别:
    Standard Grant
Development of the integrated system for the analysis of brain function by high resolution micro-PET for small animals using high field MRI
开发利用高场 MRI 通过高分辨率微型 PET 分析小动物脑功能的集成系统
  • 批准号:
    20591434
  • 财政年份:
    2008
  • 资助金额:
    $ 33.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了