Further Study of Hierarchical Reconstruction Algorithms

层次化重建算法的进一步研究

基本信息

  • 批准号:
    0810913
  • 负责人:
  • 金额:
    $ 16.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-15 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

High resolution capturing schemes for solving conservation laws, e.g., the ENO scheme, smear discontinuities within a few mesh cells and achieve high accuracy where the solution is smooth. A series of works by Cockburn and Shu et al. on discontinuous Galerkin (DG) methods and local DG introduce many new techniques to the DG family and enable it to solve a broader class of equations including conservation laws. Still, the limiting technique for DG is not very mature and is considered to be one of the major open problems in scientific computing. The investigator and his colleagues propose the further study of a new limiting technique, the hierarchical reconstruction (HR). It is a general reconstruction procedure used as a limiter to remove spurious oscillations in the presence of shocks. The HR algorithm, motivated by the moment limiter of Biswas, Devine and Flaherty (1994), involves only a MUSCL, a second order ENO or other piecewise linear reconstructions in each stage of a multi-layer reconstruction process without characteristic decomposition. Therefore it is compact and easy to implement for arbitrary meshes. It does not truncate higher degree terms of a polynomial and actually uses the information from all degree terms. It has been proved that HR does not reduce the approximation order of a polynomial. Moreover, HR can be used for finite volume and central schemes as well without characteristic decomposition, which leads to a new finite volume approach. The investigator and his colleagues also propose the study of the local constant velocity version of the back and forth error compensation and correction method (BFECC) for velocity advections in multi-phase fluid simulation, BFECC for moving meshes and for interpolation between grids. Adapting HR to BFECC wherever necessary could significantly improve the robustness of BFECC for non-smooth solution.This project is on the study and development of new methods for using computers to simulate certain natural phenomena such as airflow passing a wing, shock waves propagating in a body, smokes etc. Computer simulations help scientists and engineers testing various experimental configurations and product designs without conducting costly experiments.Nowadays a lot of special effects in Hollywood movies are made by computer simulation. The BFECC method co-developed by the principal investigator has been used by NVIDIA for smoke simulation, http://developer.download.nvidia.com/SDK/10/direct3d/Source/Smoke/doc/Smoke.wmv.However, computer simulation is a noisy process. Noises constantly come from machine errors, and from the non-smoothness of simulated objects, such as shocks, corners of boundaries, interfaces separating different fluids or tissues in a body etc. Without special techniques, simulation noises caused by shocks can easily destroy a simulation result. In fact, two of the fundamental challenges for developing computational methods are to reduce simulation time and noises from the non-smoothness of simulated objects. The investigator and his colleagues study a new method for removing noise, which is easier to use for complex geometry and less dependent on simulated objects. Preliminary results for simulations of shocks are encouraging. The new idea could be adapted to many other areas and motivate the development of improved computational methods. For example, it could allow a complicated aircraft shape to be simulated more easily, motivate more robust techniques to stabilize simulations of multi-phase fluids, fuel cells etc and provide a black-box de-noising tool for simulations whose underlying physics are more empirical.
用于求解守恒定律的高分辨率捕获方案,例如,ENO格式,在几个网格单元内涂抹不连续性,并在解光滑的地方实现高精度。Cockburn和Shu等人关于间断Galerkin(DG)方法和局部DG的一系列工作为DG族引入了许多新技术,使其能够求解包括守恒律在内的更广泛的一类方程。尽管如此,DG的限制技术还不是很成熟,被认为是科学计算中的主要开放问题之一。研究者和他的同事们建议进一步研究一种新的限制技术,分层重建(HR)。这是一个通用的重建程序,用作限制器,以消除虚假振荡的冲击存在。 由Biswas,Devine和Flaherty(1994)的矩限制器激发的HR算法在多层重建过程的每个阶段仅涉及MUSCL,二阶ENO或其他分段线性重建,而没有特征分解。因此,它是紧凑的,易于实现的任意网格。它不截断多项式的高次项,实际上使用来自所有次项的信息。已证明HR不降低多项式的逼近阶。此外,HR可以用于有限体积和中心格式,以及没有特征分解,这导致了一个新的有限体积方法。研究人员和他的同事还提出了研究多相流体模拟中速度平流的局部恒速版本的来回误差补偿和校正方法(BFECC)、移动网格和网格之间插值的BFECC。在有需要的情况下,将HR调整到BFECC,可以显著提高BFECC对非光滑解的鲁棒性。这个项目是研究和开发使用计算机模拟某些自然现象的新方法,例如气流通过机翼,激波在物体中传播,计算机模拟帮助科学家和工程师测试各种实验配置和产品设计,而无需进行昂贵的现在好莱坞电影中的很多特效都是通过计算机模拟来制作的。由主要研究者共同开发的BFECC方法已被NVIDIA用于烟雾模拟,http://developer.download.nvidia.com/SDK/10/direct3d/Source/Smoke/doc/Smoke.wmv。然而,计算机模拟是一个嘈杂的过程。噪声经常来自机器错误,以及模拟对象的非平滑性,例如冲击,边界的拐角,分离体内不同流体或组织的界面等。如果没有特殊技术,由冲击引起的模拟噪声很容易破坏模拟结果。事实上,开发计算方法的两个基本挑战是减少模拟时间和来自模拟对象的非平滑性的噪声。研究人员和他的同事们研究了一种去除噪音的新方法,这种方法更容易用于复杂的几何形状,并且对模拟物体的依赖性更小。冲击模拟的初步结果令人鼓舞。这个新想法可以适用于许多其他领域,并推动改进计算方法的发展。例如,它可以允许更容易地模拟复杂的飞机形状,激励更强大的技术来稳定多相流体,燃料电池等的模拟,并为基础物理学更经验的模拟提供黑箱去噪工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingjie Liu其他文献

Subwavelength polarization splitter-rotator with ultra-compact footprint
具有超紧凑占地面积的亚波长偏振分光器-旋转器
  • DOI:
    10.1364/ol.44.004495
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Yingjie Liu;Shuai Wang;Yujie Wang;Wei Liu;Hucheng Xie;Yong Yao;Qinghai Song;Xinliang Zhang;Yu Yu;Ke Xu
  • 通讯作者:
    Ke Xu
Stimulation of arachidonic acid release by vasopressin in A7r5 vascular smooth muscle cells mediated by Ca2+‐stimulated phospholipase A2
Ca2+ 刺激的磷脂酶 A2 介导的 A7r5 血管平滑肌细胞中加压素刺激花生四烯酸的释放
  • DOI:
    10.1016/j.febslet.2006.06.055
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Yingjie Liu;C. Taylor
  • 通讯作者:
    C. Taylor
span style=font-family:#39;font-size:12pt;Synthesis of silk-based microcapsules by desolvation and hybridization/span
去溶剂化和杂化合成丝基微胶囊
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bo Du;Jingjie Wang;Zhimin Zhou;Hongbo Tang;Xuemin Li;Yingjie Liu;Qiqing Zhang
  • 通讯作者:
    Qiqing Zhang
Central Schemes on Overlapping Cells Dedicated to James Glimm on the occasion of his 70th birthday
重叠单元的中央计划献给詹姆斯·格里姆 (James Glimm) 70 岁生日
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingjie Liu
  • 通讯作者:
    Yingjie Liu
Evaluation of surface water–groundwater interaction using environmental isotopes (D, 18O and 222Rn) in Chongli Area, China
利用环境同位素(D、18O和222Rn)评价中国崇礼地区地表水与地下水相互作用

Yingjie Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingjie Liu', 18)}}的其他基金

Collaborative Research: Towards an Accurate, High-Fidelity Modeling System for Multiphysics and Multiscale Coastal Ocean Flows
合作研究:建立准确、高保真度的多物理场和多尺度沿海海洋流建模系统
  • 批准号:
    1622453
  • 财政年份:
    2016
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Standard Grant
Study of Limiting Methods for Computation of Conservation Laws and Other Hyperbolic Problems
守恒定律及其他双曲问题计算的极限方法研究
  • 批准号:
    1522585
  • 财政年份:
    2015
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Standard Grant
New Techniques on Reconstruction and Limiting for Numerical PDE
数值偏微分方程重构与限制新技术
  • 批准号:
    1115671
  • 财政年份:
    2011
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Standard Grant
Backward Error Compensation Algorithms and Their Applications
后向误差补偿算法及其应用
  • 批准号:
    0511815
  • 财政年份:
    2005
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Standard Grant

相似国自然基金

相似海外基金

Efficient and dynamic visualization study of electromagnetic properties of iron-based alloys containing irradiation formed cavities and hierarchical structures
含辐照形成空腔和分层结构的铁基合金电磁性能的高效动态可视化研究
  • 批准号:
    23H01890
  • 财政年份:
    2023
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Study on the correlation bewteen the hierarchical structure of foods and texture by synchrotron X-ray scattering method
同步辐射X射线散射法研究食品层次结构与质地的相关性
  • 批准号:
    23K05124
  • 财政年份:
    2023
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of rain fall based on super-droplet method and hierarchical Lagrangian analysis
基于超液滴法和分层拉格朗日分析的降雨研究
  • 批准号:
    23K03265
  • 财政年份:
    2023
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study of three-dimensional characteristics of middle atmosphere general circulation and wave hierarchical structure and its intra-seasonal to inter-annual variations
中层大气环流与波动层次结构三维特征及其季节内、年际变化研究
  • 批准号:
    22H00169
  • 财政年份:
    2022
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of a hierarchical scale-adaptive large-eddy simulation method for the study of turbulence
开发用于湍流研究的分层尺度自适应大涡模拟方法
  • 批准号:
    RGPIN-2022-05155
  • 财政年份:
    2022
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Discovery Grants Program - Individual
Hierarchical modelling with recent panel data to study the relationship between political trust and political participation.
利用最新面板数据进行分层建模,研究政治信任与政治参与之间的关系。
  • 批准号:
    2735086
  • 财政年份:
    2022
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Studentship
Study of the hierarchical sentence structure of Japanese based on the corpus with syntactic and semantic information
基于句法语义信息语料库的日语层次句结构研究
  • 批准号:
    22K00524
  • 财政年份:
    2022
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Modal Semantics without Possible Worlds:A Study of Hierarchical Non-deterministic Many-valuedSemantics
没有可能世界的模态语义:分层非确定性多值语义研究
  • 批准号:
    438073380
  • 财政年份:
    2020
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Research Grants
Fundamental Study of Fatigue Life Enhancement in Hierarchical Carbon-Fiber/Epoxy/Nanoparticle Composites
多级碳纤维/环氧树脂/纳米颗粒复合材料疲劳寿命增强的基础研究
  • 批准号:
    2015750
  • 财政年份:
    2020
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Standard Grant
Study on a hierarchical association-support system applying flexible connections of text information
应用文本信息灵活连接的分层关联支持系统研究
  • 批准号:
    19K03063
  • 财政年份:
    2019
  • 资助金额:
    $ 16.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了