Study of Limiting Methods for Computation of Conservation Laws and Other Hyperbolic Problems

守恒定律及其他双曲问题计算的极限方法研究

基本信息

  • 批准号:
    1522585
  • 负责人:
  • 金额:
    $ 23.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-15 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Many natural systems are modeled by differential equations of so-called hyperbolic type. For example, models used for weather forecasting, aircraft design, and study of ocean currents and biofluids are all hyperbolic differential equations. This research project concerns the development of techniques to approximate the solutions of hyperbolic differential equations. More precisely, the project continues the development of numerical methods for hyperbolic equations with non-smooth solutions (such as is the case when the terms appearing in the model itself are subject to the influence of non-smoothness; say, because of non-smooth boundaries, or interfaces). In such cases, effective methods must be able to remove approximation artifacts introduced by the non-smoothness, while maintaining as much as possible a behavior close to that of the underlying expected true solution. The impact of the project on applied domains in the sciences and engineering will be in introducing techniques to guarantee more accurate and efficient solutions based on numerical methods. Additional broader impacts include mentoring and collaborating with a graduate student and disseminating the research findings to the larger scientific community through seminars and public lectures. The project studies numerical methods for hyperbolic differential equations, in particular for problems that do not have smooth solutions, where accurate computations largely depend on nonlinear limiting methods. The PI will develop several techniques to improve existing numerical methods and also to develop new methods. One goal of the project is the development of new limiting methods for the "back and forth error compensation and correction method." A second goal of the project is to improve on the Courant-Friedrichs-Lewy (CFL) numbers of Runge-Kutta discontinuous Galerkin methods for hyperbolic conservation laws. Here, the main idea of the PI and collaborators is to use extra conservation constraints as penalty for the variational energy functional, and thereby achieve CFL numbers several times larger without increasing the complexity or reducing order of accuracy.
许多自然系统是由所谓的双曲型微分方程模拟的。例如,用于天气预报、飞机设计、洋流和生物流体研究的模型都是双曲微分方程。本研究计画系关于发展双曲型微分方程式之近似解之技巧。更确切地说,该项目继续开发具有非光滑解的双曲方程的数值方法(例如,当模型本身中出现的项受到非光滑影响时的情况;例如,由于非光滑边界或界面)。在这种情况下,有效的方法必须能够去除由非平滑性引入的近似伪影,同时尽可能地保持接近潜在的预期真解的行为。该项目对科学和工程应用领域的影响将是引入技术,以保证基于数值方法的更准确和有效的解决方案。其他更广泛的影响包括指导和与研究生合作,并通过研讨会和公开讲座向更大的科学界传播研究成果。该项目研究双曲型微分方程的数值方法,特别是对于没有光滑解的问题,精确的计算在很大程度上取决于非线性极限方法。PI将开发几种技术来改进现有的数值方法,并开发新的方法。该项目的一个目标是为“来回误差补偿和校正方法”开发新的限制方法。“该项目的第二个目标是改进双曲守恒律的Runge-Kutta间断Galerkin方法的Courant-Friedrichs-Lewy(CFL)数。在这里,PI和合作者的主要思想是使用额外的守恒约束作为变分能量泛函的惩罚,从而在不增加复杂性或降低精度的情况下实现几倍的CFL数。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingjie Liu其他文献

Evaluation of surface water–groundwater interaction using environmental isotopes (D, 18O and 222Rn) in Chongli Area, China
利用环境同位素(D、18O和222Rn)评价中国崇礼地区地表水与地下水相互作用
Solutions of the elastic fields in a half-plane region containing multiple inhomogeneities with the equivalent inclusion method and the applications to properties of composites
含多重不均匀半平面区域弹性场的等效包含法求解及其在复合材料性能中的应用
  • DOI:
    10.1007/s00707-018-2340-y
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Xiangxin Dang;Yingjie Liu;Linjuan Wang;Jianxiang Wang
  • 通讯作者:
    Jianxiang Wang
Stimulation of arachidonic acid release by vasopressin in A7r5 vascular smooth muscle cells mediated by Ca2+‐stimulated phospholipase A2
Ca2+ 刺激的磷脂酶 A2 介导的 A7r5 血管平滑肌细胞中加压素刺激花生四烯酸的释放
  • DOI:
    10.1016/j.febslet.2006.06.055
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Yingjie Liu;C. Taylor
  • 通讯作者:
    C. Taylor
Central Schemes on Overlapping Cells Dedicated to James Glimm on the occasion of his 70th birthday
重叠单元的中央计划献给詹姆斯·格里姆 (James Glimm) 70 岁生日
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingjie Liu
  • 通讯作者:
    Yingjie Liu
Subwavelength polarization splitter-rotator with ultra-compact footprint
具有超紧凑占地面积的亚波长偏振分光器-旋转器
  • DOI:
    10.1364/ol.44.004495
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Yingjie Liu;Shuai Wang;Yujie Wang;Wei Liu;Hucheng Xie;Yong Yao;Qinghai Song;Xinliang Zhang;Yu Yu;Ke Xu
  • 通讯作者:
    Ke Xu

Yingjie Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingjie Liu', 18)}}的其他基金

Collaborative Research: Towards an Accurate, High-Fidelity Modeling System for Multiphysics and Multiscale Coastal Ocean Flows
合作研究:建立准确、高保真度的多物理场和多尺度沿海海洋流建模系统
  • 批准号:
    1622453
  • 财政年份:
    2016
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Standard Grant
New Techniques on Reconstruction and Limiting for Numerical PDE
数值偏微分方程重构与限制新技术
  • 批准号:
    1115671
  • 财政年份:
    2011
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Standard Grant
Further Study of Hierarchical Reconstruction Algorithms
层次化重建算法的进一步研究
  • 批准号:
    0810913
  • 财政年份:
    2008
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Standard Grant
Backward Error Compensation Algorithms and Their Applications
后向误差补偿算法及其应用
  • 批准号:
    0511815
  • 财政年份:
    2005
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Standard Grant

相似海外基金

Limiting False Positives in Empirical Asset Pricing Tests
限制实证资产定价测试中的误报
  • 批准号:
    DP240100277
  • 财政年份:
    2024
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Discovery Projects
Evaluation of "Plain Japanese" training for medical professionals: Factors promoting and limiting its utilization in practical
医疗专业人员“简单日语”培训的评价:促进和限制其实际应用的因素
  • 批准号:
    24K20181
  • 财政年份:
    2024
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Imagining Better Futures of Health and Social Care with and for People with Energy Limiting Chronic Illnesses
与患有慢性疾病的人一起畅想健康和社会关怀的美好未来
  • 批准号:
    AH/X012263/1
  • 财政年份:
    2023
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Research Grant
Fault Tolerant Current Limiting Superconducting Cable for Cryo-Electrified Systems
用于低温电气化系统的容错限流超导电缆
  • 批准号:
    2890181
  • 财政年份:
    2023
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Studentship
Fault Tolerant Current Limiting Superconducting Cable for Cryo-Electrified Systems
用于低温电气化系统的容错限流超导电缆
  • 批准号:
    2894117
  • 财政年份:
    2023
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Studentship
Collaborative Research: Strain-limiting Cosserat Rods with Applications to Modeling Biological Fibers
合作研究:应变限制 Cosserat 棒在生物纤维建模中的应用
  • 批准号:
    2307563
  • 财政年份:
    2023
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Strain-limiting Cosserat Rods with Applications to Modeling Biological Fibers
合作研究:应变限制 Cosserat 棒在生物纤维建模中的应用
  • 批准号:
    2307562
  • 财政年份:
    2023
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Time-Discrete Regularized Variational Model for Brittle Fracture in Novel Strain-Limiting Elastic Solids
LEAPS-MPS:新型应变限制弹性固体中脆性断裂的时间离散正则化变分模型
  • 批准号:
    2316905
  • 财政年份:
    2023
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Standard Grant
Non-linear modelling of performance limiting MHD and disruptions in spherical tokamaks
球形托卡马克性能限制 MHD 和破坏的非线​​性建模
  • 批准号:
    2910483
  • 财政年份:
    2023
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Studentship
Using Philosophical Dialogues with Children to Understand Care and Wellbeing for Siblings of those with Life-Limiting Conditions
通过与儿童的哲学对话来了解对生命有限的兄弟姐妹的护理和福祉
  • 批准号:
    AH/X012174/1
  • 财政年份:
    2023
  • 资助金额:
    $ 23.66万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了