Analysis and implementation of accurate numerical boundary conditions for Large Eddy Simulations and Boltzmann equation
大涡模拟和玻尔兹曼方程精确数值边界条件的分析和实现
基本信息
- 批准号:0810946
- 负责人:
- 金额:$ 14.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposed research will improve the accuracy and efficiency of numerical simulations in unbounded domains. Investigations in two important areas of fluid dynamics are pursued. The first is the development of absorbing boundary conditions based on the Perfectly Matched Layer (PML) technique for Large Eddy Simulation (LES) of turbulent flows. Following recent successes of extending the Perfectly Matched Layer methodology to the nonlinear Euler and Navier-Stokes equations, further development of the PML technique for Large Eddy Simulation of turbulent flows is proposed. Formulations of absorbing equations for LES, as well as other turbulent flow simulation, such as the time-dependent Reynolds Averaged Navier-Stokes (RANS) simulations, are proposed. The second area of research is the development of non-reflecting boundary conditions for numerical schemes for the Boltzmann-BGK equation in gas kinetic theory. Proposed work will develop, analyze and implement the absorbing boundary condition based on the Perfectly Matched Layer methodology. Implementation and analysis of PML absorbing boundary condition in the Lattice Boltzmann Method will also be carried out in proposed research.Due to the ubiquity of non-reflecting boundaries and the importance of Large Eddy Simulation in the computational studies of complex turbulent flows, proposed work will have a direct impact on the quality and efficiency of a broad class of numerical simulations in computational fluid dynamics and computational acoustics, such as in the reduction of airframe and jet noises, in studies of turbulent combustion in reactive flows, and in numerical models for weather predictions. The PML for the Boltzmann-BGK equation developed in proposed research is applicable to a diverse field of scientific investigations that employ the kinetic theory, such as multiphase and multi-component flows, microfluidics in nanotechnologies, particle suspensions and microflows in micro-electro-mechanical systems (MEMS).
所提出的研究将提高无界区域数值模拟的精度和效率。对流体动力学的两个重要领域进行了研究。第一个是基于完全匹配层(PML)技术的湍流大涡模拟吸收边界条件的发展。继最近将完全匹配层方法推广到非线性Euler方程和Navier-Stokes方程之后,进一步发展了用于湍流大涡模拟的PML技术。提出了大涡模拟吸收方程的公式,以及其他湍流模拟,如依赖于时间的雷诺平均N-S(RANS)模拟。第二个研究领域是气体运动理论中Boltzmann-BGK方程数值格式的非反射边界条件的发展。建议的工作将基于完全匹配层方法来开发、分析和实现吸收边界条件。由于非反射边界的普遍存在和大涡模拟在复杂湍流计算研究中的重要性,所提出的工作将直接影响计算流体力学和计算声学中广泛的数值模拟的质量和效率,例如在降低机身和喷气噪声方面,在反应流中的湍流燃烧研究中,以及在天气预报的数值模式中。所建立的Boltzmann-BGK方程的PML适用于各种应用动力学理论的科学研究领域,如多相和多组分流动、纳米技术中的微流体、粒子悬浮和微电子机械系统(MEMS)中的微流动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fang Hu其他文献
Stabilization of Quasi Integrable Hamiltonian Systems With Fractional Derivative Damping by Using Fractional Optimal Control
使用分数最优控制稳定具有分数导数阻尼的准可积哈密顿系统
- DOI:
10.1109/tac.2013.2258787 - 发表时间:
2013-04 - 期刊:
- 影响因子:6.8
- 作者:
Fang Hu;WEI QIU ZHU - 通讯作者:
WEI QIU ZHU
A compact X-band backward traveling-wave accelerating structure
一种紧凑的X波段后向行波加速结构
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.8
- 作者:
Xiancai Lin;Hao Zha;Jia;Qiang Gao;Fang Hu;Qing;H. Chen - 通讯作者:
H. Chen
Multi-scale Corner Detection Using Triangle-area Representation
使用三角形区域表示的多尺度角点检测
- DOI:
10.1109/iita.2009.119 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Fang Hu;Zhizhen Yang;Zhihui Yang - 通讯作者:
Zhihui Yang
The separation of Ni(II) over base metal ions in acidic polymetallic medium: Synergistic extraction and structural evidence
酸性多金属介质中 Ni(II) 与贱金属离子的分离:协同萃取和结构证据
- DOI:
10.1016/j.hydromet.2018.10.007 - 发表时间:
2018-11 - 期刊:
- 影响因子:4.7
- 作者:
Fang Hu;Huiping Hu;Yuqing Luo;Yongxi Wang;Jinpeng Yang;Jiugang Hu - 通讯作者:
Jiugang Hu
Synthesis and In Vitro Anti-Breast Cancer Activity of Trametenolic Acid B Derivatives
曲美烯酸B衍生物的合成及体外抗乳腺癌活性
- DOI:
10.4028/www.scientific.net/amr.634-638.1135 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
M. Ding;Qiaoyin Zhang;Fang Hu;N. Huang;Jun Zhi Wang - 通讯作者:
Jun Zhi Wang
Fang Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fang Hu', 18)}}的其他基金
Study of Dispersive Waves and Development of Accurate Nonreflecting Boundary Conditions
色散波的研究和精确无反射边界条件的开发
- 批准号:
0411402 - 财政年份:2004
- 资助金额:
$ 14.6万 - 项目类别:
Standard Grant
相似海外基金
Mobile phone-based screening for anemia in young children in western Kenya
基于手机的肯尼亚西部幼儿贫血筛查
- 批准号:
10752968 - 财政年份:2023
- 资助金额:
$ 14.6万 - 项目类别:
Screening strategies for sexually transmitted infections in a high HIV incidence setting in South Africa
南非艾滋病毒高发地区的性传播感染筛查策略
- 批准号:
10761853 - 财政年份:2023
- 资助金额:
$ 14.6万 - 项目类别:
Evaluating the feasibility of an innovative point-of-care screening tool for detection of infant motor delay within the newborn period
评估用于检测新生儿时期婴儿运动迟缓的创新护理点筛查工具的可行性
- 批准号:
10742419 - 财政年份:2023
- 资助金额:
$ 14.6万 - 项目类别:
Learning Precision Medicine for Rare Diseases Empowered by Knowledge-driven Data Mining
通过知识驱动的数据挖掘学习罕见疾病的精准医学
- 批准号:
10732934 - 财政年份:2023
- 资助金额:
$ 14.6万 - 项目类别:
Developing and Evaluating Multi-Modal Clinical Diagnostic Reasoning Models for Automated Diagnosis Generation
开发和评估用于自动诊断生成的多模式临床诊断推理模型
- 批准号:
10724044 - 财政年份:2023
- 资助金额:
$ 14.6万 - 项目类别:
Diagnostic and treatment landscape of pyoderma gangrenosum
坏疽性脓皮病的诊治现状
- 批准号:
10732688 - 财政年份:2023
- 资助金额:
$ 14.6万 - 项目类别:
DeepCertainty: Deep Learning for Contextual Diagnostic Uncertainty Measurement in Radiology Reports
DeepCertainty:放射学报告中上下文诊断不确定性测量的深度学习
- 批准号:
10593770 - 财政年份:2023
- 资助金额:
$ 14.6万 - 项目类别:
Quantitative coronary flow capacity with low-dose CT for ischemia but no obstructive coronary artery disease
低剂量 CT 定量冠状动脉血流容量,用于缺血但无阻塞性冠状动脉疾病
- 批准号:
10719807 - 财政年份:2023
- 资助金额:
$ 14.6万 - 项目类别:
Improving the Detection of Hypertrophic Cardiomyopathy Using Machine Learning Applied to Electronic Health Record Data
利用机器学习应用于电子健康记录数据来改善肥厚型心肌病的检测
- 批准号:
10740278 - 财政年份:2023
- 资助金额:
$ 14.6万 - 项目类别: