Study of Dispersive Waves and Development of Accurate Nonreflecting Boundary Conditions
色散波的研究和精确无反射边界条件的开发
基本信息
- 批准号:0411402
- 负责人:
- 金额:$ 12.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In numerical simulations that involve an open physical boundary, the infinite domain is necessarily truncated due to the limitation of finite computational resources, creating virtual boundaries thatneed to be reflectionless to out-going waves. It remains a significant challenge to formulate correctly the nonreflecting boundary condition with high accuracy and efficiency for many important applicationsin computational sciences where the governing equations are nonlinear or have non-constant coefficients. The proposed research is aimed at developing accurate nonreflecting boundary conditions based on thePerfectly Matched Layer (PML) methodology that can be used to produce potentially reflectionless absorbing boundaries. In the past few years, considerable progresses have been made in constructing PML for thelinearized Euler equations with constant coefficients. The proposed work will resolve a key issue in extending PML from constant to non-constant mean flows and lead to the development of PML for nonlinear Euler and Navier-Stokes equations. An essential element in this research is the understanding of phase and group velocities of waves supported by a bounded flow. The proposed approach is genuinely multi-dimensional and extendible to nonlinear problems. Issues about mathematical formulation, stability and well-posedness of the partial differential equations, numerical accuracy and computational advantages of the proposed method, in particular the role of dispersive waves, will be studied. Theoretical as well as computational results will be compared with existing methods. This project will also provide training of graduate students in which a more traditional applied math topic, dispersive wave analysis, is closely coupled with a core scientific computing issue. Due to ubiquitousness of nonreflecting boundaries in computational sciences, the findings of this research are expected to have a broad and significant impact on a wide range of interdisciplinary scientific and engineering applications, such as those in the study of turbulence and transition, turbulent mixing, boundary layer control, aeroacoustics, underwater acoustics and atmospheric wave modeling. The use of the proposed new method, when successful, will also improve the quality of existing computational fluid dynamics codes both in the academia and industry.
在涉及开放物理边界的数值模拟中,由于有限计算资源的限制,无限域必然被截断,从而产生需要对出射波无反射的虚拟边界。对于控制方程为非线性或变系数的计算科学中的许多重要应用,如何以高精度和高效率正确地建立非反射边界条件仍然是一个重大的挑战。这项研究的目的是基于完全匹配层(PML)方法开发精确的无反射边界条件,可用于产生潜在的无反射吸收边界。在过去的几年里,对于线性化的常系数欧拉方程的PML的构造已经取得了相当大的进展。该工作将解决将PML从常量平均流扩展到非常量平均流的一个关键问题,并导致非线性Euler方程和Navier-Stokes方程的PML的发展。这项研究的一个基本要素是了解由有界流支撑的波的相速度和群速度。所提出的方法是真正的多维的,并且可以扩展到非线性问题。将研究偏微分方程组的数学形式、稳定性和适定性、数值精度和计算优势,特别是色散波的作用。理论和计算结果将与现有方法进行比较。该项目还将为研究生提供培训,在该项目中,一个更传统的应用数学主题--色散波分析--与核心科学计算问题密切相关。由于非反射边界在计算科学中的普遍存在,这一研究成果有望对广泛的跨学科科学和工程应用产生广泛而重要的影响,如在湍流和转折、湍流混合、边界层控制、空气声学、水下声学和大气波模拟方面的研究。提出的新方法的使用,如果成功,也将提高现有的计算流体力学程序的质量,无论是在学术界和工业界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fang Hu其他文献
Preparation and characterization of a PVDF/EG-POSS hybrid ultrafiltration membrane for anti-fouling improvement
抗污染PVDF/EG-POSS混合超滤膜的制备及表征
- DOI:
10.1039/c5ra05204a - 发表时间:
2015-05 - 期刊:
- 影响因子:3.9
- 作者:
Junfen Sun;Lishun Wu;Fang Hu - 通讯作者:
Fang Hu
Prognostic and predictive value of blood tumor mutational burden in lung cancer patients treated with docetaxel
多西紫杉醇治疗肺癌患者血液肿瘤突变负荷的预后和预测价值
- DOI:
- 发表时间:
- 期刊:
- 影响因子:13.4
- 作者:
Wei Nie;Jie Qian;Mi-Die Xu;Kai Gu;Fang-Fei Qian;Jun Lu;Xue-Yan Zhang;Hui-Min Wang;Bo Yan;Bo Zhang;Shu-Yuan Wang;Fang Hu;Chang-Hui Li;Hua Zhong;Bao-Hui Han - 通讯作者:
Bao-Hui Han
Multi-scale Corner Detection Using Triangle-area Representation
使用三角形区域表示的多尺度角点检测
- DOI:
10.1109/iita.2009.119 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Fang Hu;Zhizhen Yang;Zhihui Yang - 通讯作者:
Zhihui Yang
Identification of a Super-Spreading Chain of Transmission Associated with COVID-19 at the Early Stage of the Disease Outbreak in Wuhan
在武汉疾病爆发的早期阶段识别与 COVID-19 相关的超级传播链
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Ke Hu;Yang Zhao;Mengmei Wang;Qiqi Zeng;Xiaorui Wang;Ming Wang;Zhishui Zheng;Xiaochen Li;Yunting Zhang;Tao Wang;Shaolin Zeng;Yan Jiang;Dan Liu;Wenzhen Yu;Fang Hu;Hongyu Qin;Jingcan Hao;Meng Jiang;Binghong Zhang;Bingying Shi;Chengsheng Zhang - 通讯作者:
Chengsheng Zhang
The separation of Ni(II) over base metal ions in acidic polymetallic medium: Synergistic extraction and structural evidence
酸性多金属介质中 Ni(II) 与贱金属离子的分离:协同萃取和结构证据
- DOI:
10.1016/j.hydromet.2018.10.007 - 发表时间:
2018-11 - 期刊:
- 影响因子:4.7
- 作者:
Fang Hu;Huiping Hu;Yuqing Luo;Yongxi Wang;Jinpeng Yang;Jiugang Hu - 通讯作者:
Jiugang Hu
Fang Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fang Hu', 18)}}的其他基金
Analysis and implementation of accurate numerical boundary conditions for Large Eddy Simulations and Boltzmann equation
大涡模拟和玻尔兹曼方程精确数值边界条件的分析和实现
- 批准号:
0810946 - 财政年份:2008
- 资助金额:
$ 12.08万 - 项目类别:
Standard Grant
相似海外基金
Conference: Emergent Phenomena in Nonlinear Dispersive Waves
会议:非线性色散波中的涌现现象
- 批准号:
2339212 - 财政年份:2024
- 资助金额:
$ 12.08万 - 项目类别:
Standard Grant
Mathematical analysis on solitary waves for nonlinear dispersive equations
非线性色散方程孤立波的数学分析
- 批准号:
22K20337 - 财政年份:2022
- 资助金额:
$ 12.08万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
RUI: Dispersive Shock Waves in Nonlinear Lattices: Theory to Application
RUI:非线性晶格中的色散冲击波:理论到应用
- 批准号:
2107945 - 财政年份:2021
- 资助金额:
$ 12.08万 - 项目类别:
Standard Grant
Studies on stability of solitary waves for nonlinear dispersive wave equations
非线性色散波动方程孤波稳定性研究
- 批准号:
21K03315 - 财政年份:2021
- 资助金额:
$ 12.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Global studies on solitary waves for nonlinear dispersive equations
非线性色散方程孤立波的全局研究
- 批准号:
18K03379 - 财政年份:2018
- 资助金额:
$ 12.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability of two parameter family of solitary waves for nonlinear dispersive equations
非线性色散方程孤立波二参数族的稳定性
- 批准号:
18J11090 - 财政年份:2018
- 资助金额:
$ 12.08万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Linear and Nonlinear Dispersive Waves: Solitons, Nonlinear Resonances and Spectral Theory
线性和非线性色散波:孤子、非线性共振和谱理论
- 批准号:
1600749 - 财政年份:2016
- 资助金额:
$ 12.08万 - 项目类别:
Standard Grant
Nonlinear Dispersive Water Waves in Multiscale Interaction Problems
多尺度相互作用问题中的非线性色散水波
- 批准号:
1615480 - 财政年份:2016
- 资助金额:
$ 12.08万 - 项目类别:
Standard Grant
CAREER: Solitary Waves and Wavetrains in Dispersive Media
职业:色散介质中的孤立波和波列
- 批准号:
1521607 - 财政年份:2014
- 资助金额:
$ 12.08万 - 项目类别:
Continuing Grant














{{item.name}}会员




