Numerical Analysis of Quasicontinuum Methods
准连续介质方法的数值分析
基本信息
- 批准号:0811039
- 负责人:
- 金额:$ 28.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many physical processes of great importance to science and technology require numerical methods that couple modeling of the interactions of individual atoms in small regions with modeling of the interactions among larger sets of atoms (continuum models) in the remaining regions. An important example is crack growth, where practical predictive models require the accuracy of the detailed interaction of the atoms in a small region near the crack tip, along with the efficiency of continuum modeling in the larger surrounding material.Although the greatest accuracy could be achieved by a computer simulation of the interactions of all of the atoms in the material, the large number of atoms in the material makes this approach infeasible for even the fastest computers. The quasicontinuum method can make possible such simulations without sacrificing the accuracy needed for reliable prediction by coupling an atomistic model in the neighborhood of the crack tip with a continuum model in the surrounding material. The continuum model achieves the desired accuracy with a major reduction in computational work by replacing the large numbers of atoms in selected regions with representative atoms.The principal investigator proposes to develop analysis and adaptive algorithms for quasicontinuum methods that will ensure their reliability and improve their efficiency. Theory and rigorous numerical experiments will be developed to determine the most accurate and efficient atomistic-continuum coupling. The development of the quasicontinuum method has the potential to facilitate the design of new materials better able to resist failure and having other properties important for science and technology.
许多对科学和技术非常重要的物理过程需要数值方法,这些方法将小区域中单个原子相互作用的建模与其余区域中较大原子组(连续模型)之间相互作用的建模耦合起来。 一个重要的例子是裂纹扩展,其中实际的预测模型需要精确的原子在裂纹尖端附近的一个小区域中的详细相互作用,沿着在更大的周围材料中连续模拟的效率。虽然最大的精确度可以通过计算机模拟材料中所有原子的相互作用来实现,材料中大量的原子使得这种方法即使对于最快的计算机也是不可行的。 准连续体方法可以使这样的模拟,而不牺牲可靠的预测所需的准确性,耦合在附近的裂纹尖端的连续体模型在周围的材料的原子模型。 连续介质模型通过用代表性原子替换选定区域中的大量原子来实现所需的精度,并大大减少了计算工作。主要研究者建议为准连续介质方法开发分析和自适应算法,以确保其可靠性并提高其效率。 理论和严格的数值实验将被开发,以确定最准确和有效的原子连续耦合。 准连续体方法的发展有可能促进新材料的设计,使其更好地抵抗破坏,并具有对科学和技术重要的其他特性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mitchell Luskin其他文献
From Incommensurate Bilayer Heterostructures to Allen–Cahn: An Exact Thermodynamic Limit
- DOI:
10.1007/s00205-024-02043-2 - 发表时间:
2024-10-24 - 期刊:
- 影响因子:2.400
- 作者:
Michael Hott;Alexander B. Watson;Mitchell Luskin - 通讯作者:
Mitchell Luskin
The Simply Laminated Microstructure in Martensitic Crystals that Undergo a Cubic‐to‐Orthorhombic Phase Transformation
- DOI:
10.1007/s002050050170 - 发表时间:
1999-10-01 - 期刊:
- 影响因子:2.400
- 作者:
Kaushik Bhattacharya;Bo Li;Mitchell Luskin - 通讯作者:
Mitchell Luskin
Mitchell Luskin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mitchell Luskin', 18)}}的其他基金
DMREF: Collaborative Research: The Search for Novel Superconductors in Moire Flat Bands
DMREF:合作研究:在莫尔平带中寻找新型超导体
- 批准号:
1922165 - 财政年份:2019
- 资助金额:
$ 28.2万 - 项目类别:
Standard Grant
Modeling, Analysis, and Computation of 2D Layered Materials
二维层状材料的建模、分析和计算
- 批准号:
1906129 - 财政年份:2019
- 资助金额:
$ 28.2万 - 项目类别:
Standard Grant
Collaborative Research: Novel Multiscale Computational Mathematics for Surface-Dominated Nanomaterials
合作研究:表面主导纳米材料的新型多尺度计算数学
- 批准号:
1310835 - 财政年份:2013
- 资助金额:
$ 28.2万 - 项目类别:
Standard Grant
FRG: Modeling and Computation of Objective Structures in Materials Science and Biology
FRG:材料科学和生物学中目标结构的建模和计算
- 批准号:
0757355 - 财政年份:2008
- 资助金额:
$ 28.2万 - 项目类别:
Standard Grant
NIRT: Nanoscale Shape Memory Actuators and Swimming Bugs - Theory, Computing, and MBE Synthesis
NIRT:纳米级形状记忆执行器和游泳虫 - 理论、计算和 MBE 合成
- 批准号:
0304326 - 财政年份:2003
- 资助金额:
$ 28.2万 - 项目类别:
Continuing Grant
Mathematical Theory and Numerical Methods for Microscale Biomedical Devices
微型生物医学设备的数学理论和数值方法
- 批准号:
0074043 - 财政年份:2000
- 资助金额:
$ 28.2万 - 项目类别:
Standard Grant
Collaborative Research; Mathematical Sciences, Transitions and Defects in Ordered Materials
合作研究;
- 批准号:
9505077 - 财政年份:1995
- 资助金额:
$ 28.2万 - 项目类别:
Continuing Grant
Transitions and Defects in Ordered Materials
订购材料的转变和缺陷
- 批准号:
9111572 - 财政年份:1991
- 资助金额:
$ 28.2万 - 项目类别:
Continuing Grant
Workshop on the Application of Computational Mathematics andLarge-Scale Scientific Computing in Process and Chemical Engineering (Minneapolis, MN; Summer 1985)
计算数学和大规模科学计算在过程和化学工程中的应用研讨会(明尼苏达州明尼阿波利斯;1985 年夏季)
- 批准号:
8400623 - 财政年份:1984
- 资助金额:
$ 28.2万 - 项目类别:
Standard Grant
PYI: Mathematical Sciences: Computational Methods for Partial Differential Equations
PYI:数学科学:偏微分方程的计算方法
- 批准号:
8351080 - 财政年份:1984
- 资助金额:
$ 28.2万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
- 批准号:
10089539 - 财政年份:2024
- 资助金额:
$ 28.2万 - 项目类别:
Collaborative R&D
Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
- 批准号:
10089592 - 财政年份:2024
- 资助金额:
$ 28.2万 - 项目类别:
Collaborative R&D
Home Office Criminal Justice System Strategy Analysis Fellowship
内政部刑事司法系统战略分析奖学金
- 批准号:
ES/Y004906/1 - 财政年份:2024
- 资助金额:
$ 28.2万 - 项目类别:
Fellowship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 28.2万 - 项目类别:
Research Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
- 批准号:
EP/Z531133/1 - 财政年份:2024
- 资助金额:
$ 28.2万 - 项目类别:
Research Grant
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
- 批准号:
2315532 - 财政年份:2024
- 资助金额:
$ 28.2万 - 项目类别:
Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 28.2万 - 项目类别:
Continuing Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 28.2万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 28.2万 - 项目类别:
Standard Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
- 批准号:
2348238 - 财政年份:2024
- 资助金额:
$ 28.2万 - 项目类别:
Standard Grant