Collaborative Research: Novel Multiscale Computational Mathematics for Surface-Dominated Nanomaterials

合作研究:表面主导纳米材料的新型多尺度计算数学

基本信息

  • 批准号:
    1310835
  • 负责人:
  • 金额:
    $ 23.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-10-01 至 2017-09-30
  • 项目状态:
    已结题

项目摘要

Luskin1310835Park1310849 Through this collaborative proposal, the investigators develop numerical analysis and improved surface Cauchy-Born methods to ensure their reliability and improve their efficiency. The mechanical behavior and properties of nanomaterials is dominated by the effects of surfaces, whose effects become increasingly important with decreasing nanostructure size. Surfaces can cause unique, non-bulk mechanical properties, including elastic strengthening (i.e. smaller is stronger) and phase transformations, and can serve as the nucleation point for defects such as dislocations and twins. Major extensions of the numerical analysis of finite element methods for continuum elasticity and its coupling to atomistic models is required to enable the surface Cauchy-Born methods to accurately compute problems with surfaces (defects) and discrete surface microstructure, because the complex multi-well energy landscape of real nanostructures must be confronted. Many important future nanotechnologies, such as nanoscale resonant sensors, nanoelectromechanical systems (NEMS), and stretchable nanoelectronics, can be improved by a better understanding of how localized nanoscale surface effects impact their effective mechanical properties and reliability. In particular, the numerical analysis of surface Cauchy-Born methods improves the representation of the key atomic-scale surface physics that govern defect nucleation, elastic strengthening or softening, and the failure mechanisms of surface-dominated nanomaterials.
通过这一合作提案,研究人员开发了数值分析和改进的表面Cauchy-Born方法,以确保其可靠性并提高其效率。纳米材料的力学行为和性能主要受表面效应的影响,随着纳米结构尺寸的减小,表面效应变得越来越重要。表面可以产生独特的非体力学性能,包括弹性强化(即越小越强)和相变,并且可以作为位错和孪晶等缺陷的成核点。为了使表面Cauchy-Born方法能够准确地计算表面(缺陷)和离散表面微观结构问题,需要将连续弹性的有限元数值分析方法及其耦合到原子模型中,因为必须面对真实纳米结构复杂的多井能量景观。许多重要的未来纳米技术,如纳米级谐振传感器、纳米机电系统(NEMS)和可拉伸纳米电子学,可以通过更好地理解局部纳米级表面效应如何影响其有效的机械性能和可靠性来改进。特别是,表面Cauchy-Born方法的数值分析改善了控制缺陷成核、弹性强化或软化以及表面主导纳米材料失效机制的关键原子尺度表面物理的表征。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mitchell Luskin其他文献

From Incommensurate Bilayer Heterostructures to Allen–Cahn: An Exact Thermodynamic Limit
  • DOI:
    10.1007/s00205-024-02043-2
  • 发表时间:
    2024-10-24
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Michael Hott;Alexander B. Watson;Mitchell Luskin
  • 通讯作者:
    Mitchell Luskin
The Simply Laminated Microstructure in Martensitic Crystals that Undergo a Cubic‐to‐Orthorhombic Phase Transformation

Mitchell Luskin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mitchell Luskin', 18)}}的其他基金

DMREF: Collaborative Research: The Search for Novel Superconductors in Moire Flat Bands
DMREF:合作研究:在莫尔平带中寻找新型超导体
  • 批准号:
    1922165
  • 财政年份:
    2019
  • 资助金额:
    $ 23.59万
  • 项目类别:
    Standard Grant
Modeling, Analysis, and Computation of 2D Layered Materials
二维层状材料的建模、分析和计算
  • 批准号:
    1906129
  • 财政年份:
    2019
  • 资助金额:
    $ 23.59万
  • 项目类别:
    Standard Grant
Numerical Analysis of Quasicontinuum Methods
准连续介质方法的数值分析
  • 批准号:
    0811039
  • 财政年份:
    2008
  • 资助金额:
    $ 23.59万
  • 项目类别:
    Standard Grant
FRG: Modeling and Computation of Objective Structures in Materials Science and Biology
FRG:材料科学和生物学中目标结构的建模和计算
  • 批准号:
    0757355
  • 财政年份:
    2008
  • 资助金额:
    $ 23.59万
  • 项目类别:
    Standard Grant
NIRT: Nanoscale Shape Memory Actuators and Swimming Bugs - Theory, Computing, and MBE Synthesis
NIRT:纳米级形状记忆执行器和游泳虫 - 理论、计算和 MBE 合成
  • 批准号:
    0304326
  • 财政年份:
    2003
  • 资助金额:
    $ 23.59万
  • 项目类别:
    Continuing Grant
Mathematical Theory and Numerical Methods for Microscale Biomedical Devices
微型生物医学设备的数学理论和数值方法
  • 批准号:
    0074043
  • 财政年份:
    2000
  • 资助金额:
    $ 23.59万
  • 项目类别:
    Standard Grant
Collaborative Research; Mathematical Sciences, Transitions and Defects in Ordered Materials
合作研究;
  • 批准号:
    9505077
  • 财政年份:
    1995
  • 资助金额:
    $ 23.59万
  • 项目类别:
    Continuing Grant
Transitions and Defects in Ordered Materials
订购材料的转变和缺陷
  • 批准号:
    9111572
  • 财政年份:
    1991
  • 资助金额:
    $ 23.59万
  • 项目类别:
    Continuing Grant
Workshop on the Application of Computational Mathematics andLarge-Scale Scientific Computing in Process and Chemical Engineering (Minneapolis, MN; Summer 1985)
计算数学和大规模科学计算在过程和化学工程中的应用研讨会(明尼苏达州明尼阿波利斯;1985 年夏季)
  • 批准号:
    8400623
  • 财政年份:
    1984
  • 资助金额:
    $ 23.59万
  • 项目类别:
    Standard Grant
PYI: Mathematical Sciences: Computational Methods for Partial Differential Equations
PYI:数学科学:偏微分方程的计算方法
  • 批准号:
    8351080
  • 财政年份:
    1984
  • 资助金额:
    $ 23.59万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347992
  • 财政年份:
    2024
  • 资助金额:
    $ 23.59万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347991
  • 财政年份:
    2024
  • 资助金额:
    $ 23.59万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346198
  • 财政年份:
    2024
  • 资助金额:
    $ 23.59万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346197
  • 财政年份:
    2024
  • 资助金额:
    $ 23.59万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    $ 23.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
  • 批准号:
    2310137
  • 财政年份:
    2023
  • 资助金额:
    $ 23.59万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    $ 23.59万
  • 项目类别:
    Standard Grant
Collaborative Research: IHBEM: The fear of here: Integrating place-based travel behavior and detection into novel infectious disease models
合作研究:IHBEM:这里的恐惧:将基于地点的旅行行为和检测整合到新型传染病模型中
  • 批准号:
    2327797
  • 财政年份:
    2023
  • 资助金额:
    $ 23.59万
  • 项目类别:
    Continuing Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
  • 批准号:
    2219796
  • 财政年份:
    2023
  • 资助金额:
    $ 23.59万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 23.59万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了