Iterative upscaling of fluid flows in nonlinear deformable porous media

非线性可变形多孔介质中流体流动的迭代放大

基本信息

  • 批准号:
    0811180
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

The objective of this project is to develop numerical upscaling models for fluid flow through shape changing, inelastic, porous media, capable of shape recovery under pressure and temperature variations. Currently, the well-established models for poro-elastic media can only be applied to linear, elastic, porous solids. Moreover, macroscopic parameters such as average fluid pressure, and solid displacements are subject to various limitations. A key scientific contribution of the proposed research is modeling of the nonlinear coupling at the microscale between the fluid flow and solid deformation, due to both inelastic behavior of the solid and large pore-level displacements. The project will focus on fluid flow in various types of 3D pore geometries and different macroscopic parameters such as temperature, pressure and displacements. The homogenization method will be used to identify macroscopic equations and upscaled parameters which describe the effective media. Due to the complexity of the coupled fluid-structure interaction problem at the fine scale and the complex nonlinear response shape memory solids we will not attempt do derive closed form macroscopic equations. Instead, an efficient, easily parallelizable, Hybrid Multiscale Finite Element Model (HMFEM) which bypasses the explicit homogenization step by building fine-scale information directly into a coarse-scale computational grid will be developed. This numerical upscaling method will be applied to the analysis of a variable permeability filter with an SMA (Shape Memory Alloy) matrix, as a demonstration of the proposed methodology. Experimental verification of the numerical simulations will also be carried out.A porous SMA (Shape Memory Alloy) matrix makes possible devices with changing, temperature and/or stress dependent, porosity without the need for moving parts and active control mechanisms. The project will expand our understanding of tightly coupled multiphyics phenomena in such media. Design of novel temperature and pressure-controlled flow regulators with applications to filters, catalytic converters, separators and microfluidic sensors can only become possible with accurate mathematical modeling and numerical simulations of fluid flow in such deformable porous media. The project will also provide a sound theoretical understanding of upscaling strongly coupled fluid-structure interaction problems, extending current methods for engineering analysis and design of complex devices. While we focus on SMAs, SMAs encompass standard plastic materials and are representative of a broader class of shape changing materials such as Magnetic SMAs, Shape Memory Polymers and Ferroelectric materials. As a result, this work will be directly applicable to a more general class of inelastic, temperature-dependent materials.
该项目的目标是开发流体流动的数值放大模型,通过形状变化,非弹性,多孔介质,能够在压力和温度变化下恢复形状。目前,多孔弹性介质的成熟模型只能应用于线性、弹性、多孔固体。此外,宏观参数,如平均流体压力和固体位移受到各种限制。所提出的研究的一个关键科学贡献是在微观尺度上流体流动和固体变形之间的非线性耦合建模,这是由于固体的非弹性行为和大的孔隙水平位移。该项目将侧重于各种类型的3D孔隙几何形状和不同的宏观参数,如温度,压力和位移的流体流动。均匀化方法将被用来确定宏观方程和放大的参数,描述有效介质。由于精细尺度下流固耦合问题的复杂性和形状记忆固体的复杂非线性响应,我们将不尝试导出封闭形式的宏观方程。相反,一个高效的,易于并行化的,混合多尺度有限元模型(HMFEM),绕过显式均匀化步骤,通过建立精细尺度的信息直接进入一个粗尺度的计算网格将被开发。这种数值放大方法将被应用到分析的可变渗透率过滤器与SMA(形状记忆合金)矩阵,作为所提出的方法的演示。数值模拟的实验验证也将进行。多孔形状记忆合金(SMA)矩阵使得可能的设备与变化,温度和/或应力依赖,孔隙率,而不需要移动部件和主动控制机制。该项目将扩大我们对这种介质中紧耦合多物理现象的理解。应用于过滤器、催化转化器、分离器和微流体传感器的新型温度和压力控制的流量调节器的设计只能通过对这种可变形多孔介质中的流体流动进行精确的数学建模和数值模拟而成为可能。该项目还将提供一个良好的理论理解,放大强耦合的流体-结构相互作用问题,扩展目前的工程分析和复杂设备的设计方法。虽然我们专注于SMA,但SMA包括标准塑料材料,并且代表了更广泛的一类形状变化材料,如磁性SMA,形状记忆聚合物和铁电材料。因此,这项工作将直接适用于更一般的一类非弹性,温度依赖性材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yalchin Efendiev其他文献

Nonlocal transport equations in multiscale media. Modeling, dememorization, and discretizations
  • DOI:
    10.1016/j.jcp.2022.111555
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yalchin Efendiev;Wing Tat Leung;Wenyuan Li;Sai-Mang Pun;Petr N. Vabishchevich
  • 通讯作者:
    Petr N. Vabishchevich
Iterative oversampling technique for constraint energy minimizing generalized multiscale finite element method in the mixed formulation
  • DOI:
    10.1016/j.amc.2021.126622
  • 发表时间:
    2022-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Siu Wun Cheung;Eric Chung;Yalchin Efendiev;Wing Tat Leung;Sai-Mang Pun
  • 通讯作者:
    Sai-Mang Pun
基于均匀化理论的页岩基岩运移机制尺度升级研究
Efficient hybrid explicit-implicit learning for multiscale problems
  • DOI:
    10.1016/j.jcp.2022.111326
  • 发表时间:
    2022-10-15
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Yalchin Efendiev;Wing Tat Leung;Guang Lin;Zecheng Zhang
  • 通讯作者:
    Zecheng Zhang
Computational multiscale method for parabolic wave approximations in heterogeneous media
  • DOI:
    10.1016/j.amc.2022.127044
  • 发表时间:
    2022-07-15
  • 期刊:
  • 影响因子:
  • 作者:
    Eric Chung;Yalchin Efendiev;Sai-Mang Pun;Zecheng Zhang
  • 通讯作者:
    Zecheng Zhang

Yalchin Efendiev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yalchin Efendiev', 18)}}的其他基金

Temporal Splitting Methods for Multiscale Problems
多尺度问题的时间分裂方法
  • 批准号:
    2208498
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Adaptive Multiscale Simulation Framework for Reduced-Order Modeling in Perforated Domains
穿孔域降阶建模的自适应多尺度仿真框架
  • 批准号:
    1620318
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Advanced Discretization Techniques and Applications (ADTA)
高级离散化技术和应用(ADTA)
  • 批准号:
    1438451
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
DDDAS-TMRP: Collaborative Research: Adaptive Data-Driven Sensor Configuration, Modeling, and Deployment for Oil, Chemical, and Biological Contamination near Coastal Facilities
DDDAS-TMRP:协作研究:沿海设施附近石油、化学和生物污染的自适应数据驱动传感器配置、建模和部署
  • 批准号:
    0540136
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
VIETPULSE - Vietnam Intelligent Energy Trading Platform for Upscaling Local energy Storage and EV
VIETPULSE - 越南智能能源交易平台,用于升级本地储能和电动汽车
  • 批准号:
    10078878
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
The Upscaling of Tropical Pacific Ocean Rain Layers to Convection and Modes of Pacific Climate Variability
热带太平洋雨层对流的升级和太平洋气候变率的模式
  • 批准号:
    2333171
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Upscaling Invasion Impact Prediction
扩大入侵影响预测
  • 批准号:
    MR/X035662/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Upscaling and Manufacturing of Ion-Selective Membranes for Energy Storage (IonMembrane)
用于储能的离子选择性膜(IonMembrane)的升级和制造
  • 批准号:
    EP/Y014391/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
NSFDEB-NERC: Gigante: Quantifying and upscaling the causes and drivers of death for giant tropical trees
NSFDEB-NERC:Gigante:量化和升级巨型热带树木死亡的原因和驱动因素
  • 批准号:
    NE/Y003942/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Wireless Controls and Readouts for Qubit Upscaling (WiQC)
用于量子位升级 (WiQC) 的无线控制和读数
  • 批准号:
    EP/X017613/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Mobile Observations and quantification of Methane Emissions to inform National Targeting, Upscaling and Mitigation (MOMENTUM)
甲烷排放的移动观测和量化,为国家目标确定、升级和缓解提供信息 (MOMENTUM)
  • 批准号:
    NE/X014649/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
iBiotech: Upscaling of Microbial Cellulose Production for Fast Fashion and Agricultural Applications
iBiotech:针对快时尚和农业应用的微生物纤维素生产升级
  • 批准号:
    10074556
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
CAREER: Re-engineering Agricultural Drainage Infrastructure: Upscaling In-field Conservations for Regional Sustainability
职业:重新设计农业排水基础设施:扩大现场保护以实现区域可持续发展
  • 批准号:
    2239621
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了