Transformation Groups in Topology and Geometry, July 14-17, 2008
拓扑和几何变换群,2008 年 7 月 14-17 日
基本信息
- 批准号:0814126
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-04-01 至 2010-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is to provide funding for the international conference ``Transformation Groups in Topology and Geometry'', which will take place at the University of Massachusetts in Amherst, July 14-17, 2008. The participants of this conference come from many countries. The conference plans to cover three subjects. The first is symmetries of 3-dimensional manifolds. The topics to be discussed include Thurston's Conjecture of geometrization of 3-manifoldswith symmetries whose singular set is of dimension at least 1, geometrization (after Perelman) of 3-manifolds with finite fundamental groups, and symmetries of 3-manifolds related to knots and links.A second topic is group actions on 4-manifolds. The topics to be discussed include locally linear, topological actions on 4-manifolds, smooth and symplectic symmetries of 4-manifolds, and gauge theoretic techniques and their roles in studying symmetries of 4-manifolds.A third subject is transformation groups on higher dimensional manifolds.The topics to be discussed include homotopy theory in transformation groups, group actions and surgery theory, group actions in symplectic geometry, and group actions on algebraic varieties. Besides the standard conference talks (30 minutes long) there will be invited (1-hour long) plenary talks delivered by leading researchers in the corresponding areas. These talks will give an overview of a given research area and suggest possible new research directions.Symmetry is a fundamental phenomenon in mathematics (as well as physics),which is a unifying theme of a wide range of research areas.The main purpose of this conference is to bring together researchers from quite diverse areas of topology and geometry whose research is related to or involves transformation groups. This conference will be especially useful to young researchers and graduate students. For it will give them a chance to obtain a more global and comprehensive view of various research areas which only on a surface look to be disjoint and unrelated.
该项目将为2008年7月14日至17日在阿默斯特的马萨诸塞州大学举行的“拓扑和几何变换组”国际会议提供资金。这次会议的与会者来自许多国家。会议计划包括三个主题。首先是三维流形的对称性。讨论的主题包括Thurston关于奇异集维数至少为1的对称的3-流形的几何化的猜想,具有有限基本群的3-流形的几何化(Perelman之后),以及与纽结和链环有关的3-流形的对称性。内容包括局部线性、四维流形上的拓扑作用、四维流形的光滑和辛对称、规范理论及其在四维流形对称性研究中的作用;第三个主题是高维流形上的变换群,内容包括变换群中的同伦理论、群作用和外科手术理论、辛几何中的群作用、代数簇上的群作用除了标准的会议演讲(30分钟),还将邀请相应领域的领先研究人员进行全体会议演讲(1小时)。这些讲座将给出一个给定的研究领域的概述,并提出可能的新的研究方向。对称性是数学(以及物理学)中的一个基本现象,这是一个广泛的研究领域的统一主题。这次会议的主要目的是汇集来自拓扑和几何的研究人员,他们的研究与变换群有关或涉及变换群。这次会议对年轻的研究人员和研究生特别有用。因为这将给他们一个机会,以获得一个更全面和全面的看法,各种研究领域,只是在表面上看起来是脱节和无关的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weimin Chen其他文献
Single-longitudinal mode Nd:YVO4 microchip laser with orthogonal-polarization bidirectional traveling-waves mode.
具有正交偏振双向行波模式的单纵模 Nd:YVO4 微芯片激光器。
- DOI:
10.1364/oe.16.018702 - 发表时间:
2008 - 期刊:
- 影响因子:3.8
- 作者:
Yingjun Ma;Li Wu;Hehui Wu;Weimin Chen;Yanli Wang;Shijie Gu - 通讯作者:
Shijie Gu
Robust output-feedback finite-time regulator of systems with mismatched uncertainties bounded by positive functions
具有受正函数限制的不匹配不确定性系统的鲁棒输出反馈有限时间调节器
- DOI:
10.1049/iet-cta.2017.0291 - 发表时间:
2017-11 - 期刊:
- 影响因子:0
- 作者:
Shang Shi;Shengyuan Xu;Xin Yu;Junwei Lu;Weimin Chen;Zhengqiang Zhang - 通讯作者:
Zhengqiang Zhang
Clean plasma modification for recycling waste plastic bags: From improving interfacial adhesion with wood towards fabricating formaldehyde-free plywood
用于回收废旧塑料袋的清洁等离子体改性:从提高与木材的界面粘合力到制造无甲醛胶合板
- DOI:
10.1016/j.jclepro.2020.122196 - 发表时间:
2020-10 - 期刊:
- 影响因子:11.1
- 作者:
Xiaoyan Zhou;Yizhong Cao;Kai Yang;Peijing Yu;Weimin Chen;Siqun Wang;Minzhi Chen - 通讯作者:
Minzhi Chen
Gold(I)-Catalyzed Domino Cyclization for the Synthesis of Tricyclic Chromones
金(I)催化多米诺环化合成三环色酮
- DOI:
10.1055/s-0034-1380715 - 发表时间:
2015-06 - 期刊:
- 影响因子:2
- 作者:
Guokai Liu;Weimin Chen;Xiao-Shui Peng;Henry N. C. Wong - 通讯作者:
Henry N. C. Wong
A Comparative Study on the Li+/Na+ Transportation in NASICON-Type Electrolytes
NASICON型电解质中Li/Na传输的比较研究
- DOI:
10.1021/acs.jpcc.8b01987 - 发表时间:
2018-08 - 期刊:
- 影响因子:3.7
- 作者:
Shengyou Li;Xin Xu;Zhaoyu Yao;Xiongzhuo Jiang;Yu Huan;Xun Hu;Weimin Chen;Tao Wei - 通讯作者:
Tao Wei
Weimin Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weimin Chen', 18)}}的其他基金
FRG: Collaborative Research: The topology and invariants of smooth 4-manifolds
FRG:协作研究:光滑4流形的拓扑和不变量
- 批准号:
1065784 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Pseudoholomorphic curves, orbifolds, and group actions
伪全纯曲线、轨道折叠和群作用
- 批准号:
0603932 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Seiberg-Witten and Gromov invariants of symplectic 4-orbifolds and some applications
辛 4 环折的 Seiberg-Witten 和 Gromov 不变量及一些应用
- 批准号:
0638983 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Seiberg-Witten and Gromov invariants of symplectic 4-orbifolds and some applications
辛 4 环折的 Seiberg-Witten 和 Gromov 不变量及一些应用
- 批准号:
0304956 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Artin groups and diagram algebras via topology
通过拓扑的 Artin 群和图代数
- 批准号:
EP/V043323/2 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
Topology of Kaehler Manifolds, Surface Bundles, and Outer Automorphism Groups
凯勒流形、表面丛和外自同构群的拓扑
- 批准号:
2401403 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
- 批准号:
2247008 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
- 批准号:
RGPIN-2020-05343 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CAREER: Stability Phenomena in Topology and Arithmetic Groups
职业:拓扑和算术群中的稳定性现象
- 批准号:
2142709 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Artin groups and diagram algebras via topology
通过拓扑的 Artin 群和图代数
- 批准号:
EP/V043323/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Fellowship
Topology and Geometry from 3-Manifolds to Free Groups
从三流形到自由群的拓扑和几何
- 批准号:
2102018 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
- 批准号:
RGPIN-2020-05343 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Topology of Kaehler Manifolds, Surface Bundles, and Outer Automorphism Groups
凯勒流形、表面丛和外自同构群的拓扑
- 批准号:
2052801 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
- 批准号:
RGPIN-2020-05343 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual