Symplectic Topology and its Applications

辛拓扑及其应用

基本信息

  • 批准号:
    9971454
  • 负责人:
  • 金额:
    $ 4.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-01 至 2001-06-30
  • 项目状态:
    已结题

项目摘要

Proposal: DMS-9971454 Principal Investigator: Weimin ChenAbstract: This project will center on three topics in symplectic topology and geometry. In the first part the principal investigator (joint with Y. Ruan) will establish the Gromov-Witten invariants for symplectic orbifolds. This work aims at computing the Gromov-Witten invariants of a symplectic manifold by decomposing it into two pieces. Such an operation will in general introduce orbifold singularities, so the establishment of Gromov-Witten invariants for symplectic manifolds with orbifold singularities will lay the foundation for a program of computing Gromov-Witten invariants, which has great potential applications in symplectic topology as well as other related fields such as birational geometry. Other motivations come from mirror symmetry and string theory of theoretical physics, in which there is a demand to consider spaces with controlled singularities such as orbifold singularities. In the second part of this project the principal investigator will continue his work on the 3-dimensional Reeb dynamical systems by exploiting a potential connection between Seiberg-Witten Floer homology and the contact homology. The last part concerns symplectic structures on smooth 4-manifolds with vanishing second homotopy group. Currently very less is known about them. In recent years, one has witnessed some great interactions between different branches of mathematics in the area of geometry and topology, with the input of ideas from theoretical physics. This project seeks to exploit the intimate interplay between these different fields to investigate some very interesting or fundamental questions in such areas as quantum cohomology, birational geometry, the existence of periodic orbits of Reeb dynamics on a 3-dimensional space, and symplectic 4-manifolds. The principal investigator believes that a successful outcome of this project will make a significant advancement of knowledge in the areas listed above, which are important not only within mathematics but also in real life problems. For example, the importance of Reeb dynamics is seen in the following example. The motion of a satellite in the presence of the gravitational forces of the sun, the planets and the moon is described mathematically as a Reeb dynamics. The relevant part of this project aims at solving the 20-year-old Weinstein conjecture for Reeb dynamical systems on a 3-dimensinal space, which is one of the most important conjectures in the field.
项目名称:DMS-9971454主要研究者:陈伟民摘要:本项目将围绕辛拓扑和几何中的三个主题展开。 在第一部分中,主要研究者(与Y.阮)将建立Gromov-Witten不变量的辛orbifolds。这项工作的目的是计算Gromov-Witten不变量的辛流形分解成两个部分。这样的运算通常会引入轨道奇异性,因此具有轨道奇异性的辛流形的Gromov-Witten不变量的建立将为计算Gromov-Witten不变量的程序奠定基础,该程序在辛拓扑以及其他相关领域具有巨大的潜在应用,例如双有理几何。 其他的动机来自镜像对称和理论物理学的弦理论,其中需要考虑具有受控奇点的空间,例如轨道奇点。在该项目的第二部分,主要研究人员将继续他的工作,通过利用Seiberg-Witten Floer同调和接触同调之间的潜在联系,对三维Reeb动力系统。最后一部分讨论了第二同伦群为零的光滑4-流形上的辛结构。目前对它们知之甚少。近年来,人们目睹了几何学和拓扑学领域不同数学分支之间的一些重大互动,并引入了理论物理学的思想。该项目旨在利用这些不同领域之间的密切相互作用,以研究一些非常有趣或基本的问题,如量子上同调,双有理几何,三维空间上Reeb动力学周期轨道的存在性,以及辛4流形。主要研究者认为,该项目的成功结果将使上述领域的知识取得重大进展,这些领域不仅在数学领域而且在真实的生活问题中都很重要。例如,Reeb动力学的重要性在以下示例中可见。卫星在太阳、行星和月球引力作用下的运动在数学上被描述为Reeb动力学。本项目的相关部分旨在解决三维Reeb动力系统的Weinstein猜想,这是该领域最重要的成果之一。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weimin Chen其他文献

Adaptive finite-time flocking for uncertain nonlinear multi-agent systems with connectivity preservation
具有连通性的不确定非线性多智能体系统的自适应有限时间集群
  • DOI:
    10.1016/j.neucom.2017.10.031
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Ping Li;Shengyuan Xu;Weimin Chen;Yunliang Wei;Zhengqiang Zhang
  • 通讯作者:
    Zhengqiang Zhang
Gold(I)-Catalyzed Domino Cyclization for the Synthesis of Tricyclic Chromones
金(I)催化多米诺环化合成三环色酮
  • DOI:
    10.1055/s-0034-1380715
  • 发表时间:
    2015-06
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Guokai Liu;Weimin Chen;Xiao-Shui Peng;Henry N. C. Wong
  • 通讯作者:
    Henry N. C. Wong
Influences of Bonding Materials on the Accuracy of Fibre Bragg Grating Strain Measurements
粘合材料对光纤布拉格光栅应变测量精度的影响
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Zhang;Weimin Chen;Yuejie Shu;X. Lei
  • 通讯作者:
    X. Lei
Robust output-feedback finite-time regulator of systems with mismatched uncertainties bounded by positive functions
具有受正函数限制的不匹配不确定性系统的鲁棒输出反馈有限时间调节器
  • DOI:
    10.1049/iet-cta.2017.0291
  • 发表时间:
    2017-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shang Shi;Shengyuan Xu;Xin Yu;Junwei Lu;Weimin Chen;Zhengqiang Zhang
  • 通讯作者:
    Zhengqiang Zhang
A Comparative Study on the Li+/Na+ Transportation in NASICON-Type Electrolytes
NASICON型电解质中Li/Na传输的比较研究
  • DOI:
    10.1021/acs.jpcc.8b01987
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Shengyou Li;Xin Xu;Zhaoyu Yao;Xiongzhuo Jiang;Yu Huan;Xun Hu;Weimin Chen;Tao Wei
  • 通讯作者:
    Tao Wei

Weimin Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weimin Chen', 18)}}的其他基金

FRG: Collaborative Research: The topology and invariants of smooth 4-manifolds
FRG:协作研究:光滑4流形的拓扑和不变量
  • 批准号:
    1065784
  • 财政年份:
    2011
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
Transformation Groups in Topology and Geometry, July 14-17, 2008
拓扑和几何变换群,2008 年 7 月 14-17 日
  • 批准号:
    0814126
  • 财政年份:
    2008
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
Pseudoholomorphic curves, orbifolds, and group actions
伪全纯曲线、轨道折叠和群作用
  • 批准号:
    0603932
  • 财政年份:
    2006
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
Seiberg-Witten and Gromov invariants of symplectic 4-orbifolds and some applications
辛 4 环折的 Seiberg-Witten 和 Gromov 不变量及一些应用
  • 批准号:
    0638983
  • 财政年份:
    2006
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
Seiberg-Witten and Gromov invariants of symplectic 4-orbifolds and some applications
辛 4 环折的 Seiberg-Witten 和 Gromov 不变量及一些应用
  • 批准号:
    0304956
  • 财政年份:
    2003
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant

相似海外基金

Investigate features and dynamics of intron RNP topology and its role in modulating RNA metabolism
研究内含子 RNP 拓扑结构的特征和动态及其在调节 RNA 代谢中的作用
  • 批准号:
    488666
  • 财政年份:
    2023
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Operating Grants
Topology optimization of turbulent heat transfer surfaces and its validation
湍流传热表面拓扑优化及其验证
  • 批准号:
    23H01339
  • 财政年份:
    2023
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Categorical and quantitive topology and its applications
分类和定量拓扑及其应用
  • 批准号:
    RGPIN-2017-05715
  • 财政年份:
    2022
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Global Development of Toroidal Plasma Peripheral Radiative Cooling Method Using Magnetic Field Topology and Generalization of its Stabilization Mechanism
利用磁场拓扑的环形等离子体外围辐射冷却方法的全球发展及其稳定机制的推广
  • 批准号:
    22KK0039
  • 财政年份:
    2022
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Categorical and quantitive topology and its applications
分类和定量拓扑及其应用
  • 批准号:
    RGPIN-2017-05715
  • 财政年份:
    2021
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
Study of 3-dimensional topology with a pair of stable map to the plane and its fold map lift
具有一对稳定平面映射及其折叠映射升力的三维拓扑研究
  • 批准号:
    20K03574
  • 财政年份:
    2020
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Categorical and quantitive topology and its applications
分类和定量拓扑及其应用
  • 批准号:
    RGPIN-2017-05715
  • 财政年份:
    2020
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Discovery Grants Program - Individual
The 35th Summer Conference on Topology and its Applications
第35届夏季拓扑及其应用会议
  • 批准号:
    1954943
  • 财政年份:
    2020
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
Development of nonlinear topology optimization based on CMA-ES and its application to hyperelastic mechanical cloak
基于CMA-ES的非线性拓扑优化研究及其在超弹机械斗篷中的应用
  • 批准号:
    20H02053
  • 财政年份:
    2020
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Brane topology and its applications
膜拓扑及其应用
  • 批准号:
    20J00404
  • 财政年份:
    2020
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了