Pseudoholomorphic curves, orbifolds, and group actions
伪全纯曲线、轨道折叠和群作用
基本信息
- 批准号:0603932
- 负责人:
- 金额:$ 10.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0603932Weimin Chen Gromov's pseudoholomorphic curve theory has been at the center of many great advances in mathematics in the past twenty years. This project seeks to apply Gromov's ideas and techniques of pseudoholomorphic curves in the context of group actions on manifolds, which technically amounts to studying pseudoholomorphic curves in the quotient space of the group action. Such a quotient space, called an orbifold, may have singularities in general, which correspond to the fixed points of the group action. Particularly, this project proposes to systematically study a certain class of smooth finite group actions on four-dimensional manifolds, which includes finite order automorphisms of nonsingular algebraic surfaces, a subject which has been long studied in algebraic geometry. The project also seeks to classify a certain type of circle actions on the five-dimensional sphere involved in the study of Einstein metrics on the sphere, which is a subject of central importance in Riemannian geometry.The importance of symmetry in mathematics has been long recognized. Acrucial issue in the study of symmetry is to understand the structureof the set of points in the space which are fixed under the symmetry.The central new idea in this project is the observation that when studying symmetries of a four-dimensional space (for instance, the universe in which we live), one can often extract useful information about the fixed points of a symmetry by studying a certain type of rigid two-dimensional subspaces (like a soap bubble) in the four-dimensional space.
在过去的二十年里,格罗莫夫的伪全纯曲线理论一直处于数学许多重大进展的中心。本项目旨在将Gromov的伪全纯曲线的思想和技术应用于流形上的群作用,这在技术上相当于研究群作用的商空间中的伪全纯曲线。这样的商空间,称为轨道空间,一般具有奇点,奇点对应于群作用的不动点。特别地,本课题拟系统地研究四维流形上的一类光滑有限群作用,其中包括非奇异代数曲面的有限阶自同构,这是代数几何中一个长期研究的课题。该项目还试图对五维球体上的某种类型的圆作用进行分类,这涉及到对球体上的爱因斯坦度量的研究,这是黎曼几何中一个至关重要的主题。对称在数学中的重要性早已被认识到。对称研究的关键问题是理解空间中在对称下固定的点的集合的结构。这个项目的中心思想是观察到,当研究四维空间的对称性时(例如,我们生活的宇宙),人们通常可以通过研究四维空间中某种类型的刚性二维子空间(如肥皂泡)来提取关于对称性不动点的有用信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weimin Chen其他文献
Single-longitudinal mode Nd:YVO4 microchip laser with orthogonal-polarization bidirectional traveling-waves mode.
具有正交偏振双向行波模式的单纵模 Nd:YVO4 微芯片激光器。
- DOI:
10.1364/oe.16.018702 - 发表时间:
2008 - 期刊:
- 影响因子:3.8
- 作者:
Yingjun Ma;Li Wu;Hehui Wu;Weimin Chen;Yanli Wang;Shijie Gu - 通讯作者:
Shijie Gu
Robust output-feedback finite-time regulator of systems with mismatched uncertainties bounded by positive functions
具有受正函数限制的不匹配不确定性系统的鲁棒输出反馈有限时间调节器
- DOI:
10.1049/iet-cta.2017.0291 - 发表时间:
2017-11 - 期刊:
- 影响因子:0
- 作者:
Shang Shi;Shengyuan Xu;Xin Yu;Junwei Lu;Weimin Chen;Zhengqiang Zhang - 通讯作者:
Zhengqiang Zhang
Clean plasma modification for recycling waste plastic bags: From improving interfacial adhesion with wood towards fabricating formaldehyde-free plywood
用于回收废旧塑料袋的清洁等离子体改性:从提高与木材的界面粘合力到制造无甲醛胶合板
- DOI:
10.1016/j.jclepro.2020.122196 - 发表时间:
2020-10 - 期刊:
- 影响因子:11.1
- 作者:
Xiaoyan Zhou;Yizhong Cao;Kai Yang;Peijing Yu;Weimin Chen;Siqun Wang;Minzhi Chen - 通讯作者:
Minzhi Chen
Gold(I)-Catalyzed Domino Cyclization for the Synthesis of Tricyclic Chromones
金(I)催化多米诺环化合成三环色酮
- DOI:
10.1055/s-0034-1380715 - 发表时间:
2015-06 - 期刊:
- 影响因子:2
- 作者:
Guokai Liu;Weimin Chen;Xiao-Shui Peng;Henry N. C. Wong - 通讯作者:
Henry N. C. Wong
A Comparative Study on the Li+/Na+ Transportation in NASICON-Type Electrolytes
NASICON型电解质中Li/Na传输的比较研究
- DOI:
10.1021/acs.jpcc.8b01987 - 发表时间:
2018-08 - 期刊:
- 影响因子:3.7
- 作者:
Shengyou Li;Xin Xu;Zhaoyu Yao;Xiongzhuo Jiang;Yu Huan;Xun Hu;Weimin Chen;Tao Wei - 通讯作者:
Tao Wei
Weimin Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weimin Chen', 18)}}的其他基金
FRG: Collaborative Research: The topology and invariants of smooth 4-manifolds
FRG:协作研究:光滑4流形的拓扑和不变量
- 批准号:
1065784 - 财政年份:2011
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
Transformation Groups in Topology and Geometry, July 14-17, 2008
拓扑和几何变换群,2008 年 7 月 14-17 日
- 批准号:
0814126 - 财政年份:2008
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
Seiberg-Witten and Gromov invariants of symplectic 4-orbifolds and some applications
辛 4 环折的 Seiberg-Witten 和 Gromov 不变量及一些应用
- 批准号:
0638983 - 财政年份:2006
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
Seiberg-Witten and Gromov invariants of symplectic 4-orbifolds and some applications
辛 4 环折的 Seiberg-Witten 和 Gromov 不变量及一些应用
- 批准号:
0304956 - 财政年份:2003
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
Symplectic Topology and its Applications
辛拓扑及其应用
- 批准号:
9971454 - 财政年份:1999
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
相似国自然基金
Lienard系统的不变代数曲线、可积性与极限环问题研究
- 批准号:12301200
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Quantifying Genetic and Ecological Constraints on the Evolution of Thermal Performance Curves
职业:量化热性能曲线演变的遗传和生态约束
- 批准号:
2337107 - 财政年份:2024
- 资助金额:
$ 10.55万 - 项目类别:
Continuing Grant
Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
- 批准号:
2401321 - 财政年份:2024
- 资助金额:
$ 10.55万 - 项目类别:
Continuing Grant
CAREER: Accelerating Algorithms for Computing Isogenies and Endomorphisms of Supersingular Elliptic Curves
职业:加速计算超奇异椭圆曲线同构和自同态的算法
- 批准号:
2340564 - 财政年份:2024
- 资助金额:
$ 10.55万 - 项目类别:
Continuing Grant
Combinatorics of Complex Curves and Surfaces
复杂曲线和曲面的组合
- 批准号:
2401104 - 财政年份:2024
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
Super Quantum Curves and Super Voros Coefficients
超级量子曲线和超级 Voros 系数
- 批准号:
22KJ0715 - 财政年份:2023
- 资助金额:
$ 10.55万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Random curves and surfaces with conformal symmetries
具有共形对称性的随机曲线和曲面
- 批准号:
2246820 - 财政年份:2023
- 资助金额:
$ 10.55万 - 项目类别:
Continuing Grant
The embedded topology of projective plane curves and the generalization of splitting invariants
射影平面曲线的嵌入拓扑和分裂不变量的推广
- 批准号:
23K03042 - 财政年份:2023
- 资助金额:
$ 10.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
$ 10.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Diversified study on Manin's conjecture for rational points/rational curves/motives
马宁有理点/有理曲线/动机猜想的多元化研究
- 批准号:
23H01067 - 财政年份:2023
- 资助金额:
$ 10.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conference: 1, 2, 3: Curves, Surfaces, and 3-Manifolds
会议:1,2,3:曲线、曲面和 3-流形
- 批准号:
2246832 - 财政年份:2023
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant