IMR: Development of an Electrostatic Levitation Facility for Materials Research and Education

IMR:开发用于材料研究和教育的静电悬浮设施

基本信息

  • 批准号:
    0817157
  • 负责人:
  • 金额:
    $ 28.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

Technical AbstractA team of scientists and students at Iowa State University, Washington University and the University of Massachusetts, Amherst will develop an Electrostatic Levitation (ESL) facility at Iowa State University that will allow measurements of the thermophysical properties (density, surface tension, viscosity and calorimetry) as well as magnetic susceptibility and electrical resistance (using a novel tunnel diode resonator technique) at temperatures up to 3000K. The absence of a container or gas flow around the samples allows the liquids to be supercooled, a feature that has already enabled new high-impact investigations of the relationship between the liquid and solid phase structures in metals and alloys. A portable chamber, optimized for synchrotron x-ray diffraction measurements, will be constructed at Washington University in St. Louis. These two complementary facilities will allow studies of the development of short and medium range order in equilibrium and metastable liquids to be correlated with changes in their thermophysical, electrical and magnetic properties. The Iowa State facility will provide new information on liquid-liquid phase transitions, phase-transformation kinetics during solidification and their effect on materials processing, evolving order in systems undergoing structural and magnetic transitions, the detection and characterization of metastable phases and the influence of magnetic fields on the solidification process. The ability to determine, in-situ¬, both the structure and properties of these metastable phases, their formation with composition and temperature, and their role in the formation or inhibition of stable phases at lower temperatures, will add tremendously to our understanding of stable phase formation in complex systems.General AbstractLiquid and glasses are around us everyday, yet in many ways they are only poorly understood. Neither their atomic structures, the phase changes that occur within them, nor their electrical and magnetic properties are well known. For example, in 1721 Fahrenheit discovered a tendency for water cooled to below its freezing temperature (a supercooled liquid) to resist the formation of the crystalline phase, ice. Supercooling is now known to be possible in all liquids. Why it happens, however, and what changes occur in the supercooled state of the liquid before it crystallizes, are questions of current interest. Further, the glass transition, i.e. how a liquid turns into a glass, has significant practical consequences that have been recognized for thousands of years. It allows, for example, silicate glasses to be worked and blown into beautiful and practical intricate shapes. Like supercooling, the glass transition is ubiquitous, but what underlies it remains one of the outstanding problems in condensed matter and materials physics. A team of scientists and students at Iowa State University, Washington University and the University of Massachusetts, Amherst will develop a novel facility at Iowa State University that will enable measurements of thermophysical properties, such as the density, surface tension, viscosity, as well as electrical and magnetic properties, of liquids above and below their melting temperatures. To avoid contamination during the measurements, the liquids will be levitated in an electric field (electrostatic levitation, ESL) and heated in vacuum. Taken together with a sister ESL chamber, designed for x-ray studies of liquids, to be constructed at Washington University in St. Louis, they will be able to correlate measurements of atomic structure and physical properties, which will add tremendously to our understanding of these complex systems.
一个由爱荷华州立大学、华盛顿大学和马萨诸塞大学阿姆赫斯特分校的科学家和学生组成的团队将在爱荷华州立大学开发一个静电悬浮(ESL)设备,该设备将允许在高达3000K的温度下测量热物理特性(密度、表面张力、粘度和量热)以及磁化率和电阻(使用新型隧道二极管谐振器技术)。样品周围没有容器或气体流动,使得液体可以过冷,这一特征已经使金属和合金中液体和固相结构之间关系的新的高影响研究成为可能。在圣路易斯的华盛顿大学,将建造一个可携带的用于同步加速器x射线衍射测量的优化室。这两个互补的设施将允许研究平衡和亚稳液体的中短期秩序的发展与它们的热物理、电和磁性质的变化有关。爱荷华州立大学的设施将提供关于液-液相变、凝固过程中的相变动力学及其对材料加工的影响、经历结构和磁转变的系统的演化顺序、亚稳相的检测和表征以及磁场对凝固过程的影响的新信息。原位测定这些亚稳相的结构和性质,它们在组成和温度下的形成,以及它们在较低温度下形成或抑制稳定相中的作用的能力,将极大地增加我们对复杂系统中稳定相形成的理解。液体和眼镜每天都在我们身边,但在很多方面,我们对它们知之甚少。它们的原子结构、它们内部发生的相变以及它们的电学和磁性都不为人所知。例如,1721年华氏温度发现了一种趋势,即水会冷却到冰点以下(一种过冷的液体),从而阻止结晶阶段冰的形成。现在已知所有液体都可以过冷。然而,为什么会发生这种情况,以及在液体结晶之前的过冷状态下发生了什么变化,是目前人们感兴趣的问题。此外,玻璃化转变,即液体如何变成玻璃,具有重要的实际后果,已经被公认了数千年。例如,它允许硅酸盐玻璃被加工和吹成美丽而实用的复杂形状。像过冷一样,玻璃化转变无处不在,但其背后的原因仍然是凝聚态物质和材料物理学中的突出问题之一。爱荷华州立大学、华盛顿大学和马萨诸塞大学阿默斯特分校的一组科学家和学生将在爱荷华州立大学开发一种新型设备,用于测量熔化温度以上和以下液体的热物理性质,如密度、表面张力、粘度以及电和磁性质。为了避免测量过程中的污染,液体将在电场中悬浮(静电悬浮,ESL)并在真空中加热。与将在圣路易斯华盛顿大学建造的用于液体x射线研究的姊妹ESL室一起,它们将能够将原子结构和物理性质的测量相关联,这将极大地增加我们对这些复杂系统的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Goldman其他文献

Demagogue to dialogue: An alternative to toxic leadership in corporate downsizings
  • DOI:
    10.1016/j.orgdyn.2011.04.011
  • 发表时间:
    2011-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alan Goldman
  • 通讯作者:
    Alan Goldman

Alan Goldman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Goldman', 18)}}的其他基金

Collaborative Research: CAS-SC: Electrochemical Approaches to Sustainable Dinitrogen Fixation
合作研究:CAS-SC:可持续二氮固定的电化学方法
  • 批准号:
    2247259
  • 财政年份:
    2023
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Single Crystal Diffractometer for Teaching and Research at Rutgers University
MRI:罗格斯大学采购单晶衍射仪用于教学和研究
  • 批准号:
    2117792
  • 财政年份:
    2021
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS: Electrochemical Approaches to Sustainable Dinitrogen Fixation
合作研究:CAS:可持续二氮固定的电化学方法
  • 批准号:
    1955014
  • 财政年份:
    2020
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Standard Grant
Innovations at the Nexus of Food, Energy, and Water Systems: Electrochemical Approaches to Sustainable Dinitrogen Fixation
食品、能源和水系统关联的创新:可持续固氮的电化学方法
  • 批准号:
    1665146
  • 财政年份:
    2017
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Standard Grant
Catalytic and Catalytically Relevant Formation, Activation and Functionalization of Covalent Bonds by Late Transition Metal Complexes
后过渡金属配合物对共价键的催化和催化相关的形成、活化和官能化
  • 批准号:
    1465203
  • 财政年份:
    2015
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Continuing Grant
Investigations of Deeply Undercooled Liquids and High Temperature Phase Formation using Electrostatic Levitation and Contactless Measurement Techniques.
使用静电悬浮和非接触式测量技术研究深度过冷液体和高温相的形成。
  • 批准号:
    1308099
  • 财政年份:
    2013
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Continuing Grant
Formation, Activation and Functionalization of Carbon-Element Bonds by Late Transition Metal Complexes
后过渡金属配合物碳元素键的形成、活化和功能化
  • 批准号:
    1112456
  • 财政年份:
    2011
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Continuing Grant
Development of catalysts for the transformation of C-H to C-C bonds; experimental and computational studies of relevant fundamental reaction steps including C-C bond elimination
开发C-H键向C-C键转化的催化剂;
  • 批准号:
    0719307
  • 财政年份:
    2007
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Continuing Grant
Transition-Metal Catalysts for Insertion of Unsaturates into C-H Bonds
用于将不饱和键插入 C-H 键的过渡金属催化剂
  • 批准号:
    0316575
  • 财政年份:
    2003
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Standard Grant
U.S.-France Cooperative Research: Surface Properties of Quasicrystals and Quasicrystalline Alloys
美法合作研究:准晶及准晶合金的表面性能
  • 批准号:
    9726785
  • 财政年份:
    1998
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Development of anionic molecules possessing catalytical function and integration of catalyses by electrostatic interaction
具有催化功能的阴离子分子的开发以及通过静电相互作用的催化整合
  • 批准号:
    23H01955
  • 财政年份:
    2023
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of adhesion mechanism using upper critical solution temperature by electrostatic interaction and its application
利用静电相互作用上临界溶液温度的粘附机制的发展及其应用
  • 批准号:
    21H02005
  • 财政年份:
    2021
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of an electrostatic sprayer device to be utilised for environmental decontamination in the Healthcare Estate and Ambulances and Transport
开发静电喷雾装置,用于医疗保健区、救护车和运输中的环境净化
  • 批准号:
    69980
  • 财政年份:
    2020
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Feasibility Studies
Development of method for rapid discrimination of sterile rice spikelet based on electrostatic characteristics
基于静电特性的水稻不育穗快速判别方法的建立
  • 批准号:
    20K06010
  • 财政年份:
    2020
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a generally applicable machine learning potential with accurate long-range electrostatic interactions
开发具有精确的远程静电相互作用的普遍适用的机器学习潜力
  • 批准号:
    411538199
  • 财政年份:
    2019
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Research Grants
Development of Periodic boundary FMO-MD via multipole expansion of environmental electrostatic potential
通过环境静电势的多极展开开发周期边界 FMO-MD
  • 批准号:
    19K12010
  • 财政年份:
    2019
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of innovated cellulose single fiber fabrication by electrostatic alignment of nano fibrils in a micro channel
通过微通道中纳米原纤维的静电排列开发创新的纤维素单纤维制造
  • 批准号:
    19K04187
  • 财政年份:
    2019
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of weed control systems using electrostatic fields and applied to electrostatic herbicidal Fence
开发利用静电场的杂草控制系统并应用于静电除草围栏
  • 批准号:
    19K06299
  • 财政年份:
    2019
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of sheet medium separation technology using electrostatic adhesion force
利用静电吸附力的片状介质分离技术的开发
  • 批准号:
    18K03912
  • 财政年份:
    2018
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of innovative electrostatic septum using carbon nanotube wires
使用碳纳米管线开发创新静电隔膜
  • 批准号:
    17K05132
  • 财政年份:
    2017
  • 资助金额:
    $ 28.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了